FUJITSU SEMICONDUCTOR

CONTROLLER MANUAL CM41-00313-6E

FZMC-16 FAMILY

SOFTUNE "™ workbench
USER'S MANUAL

(o8
FUJITSU

FMC-16 FAMILY

SOFTUNE ™ workbench
USER'S MANUAL

FUJITSU SEMICONDUCTOR LIMITED

PREFACE

B What is the SOFTUNE Workbench?
SOFTUNE Workbench is support software for developing programs for the F°MC-16 family of
microprocessors/ microcontrollers.

It is a combination of a development manager, ssmulator debugger, emulator debugger, monitor debugger,
and an integrated development environment for efficient development.

B Purpose of this manual and target readers
This manual explains functions of SOFTUNE Workbench.

This manual isintended for engineers designing several kinds of products using SOFTUNE Workbench.

Other company names and products names are trademarks or registered trademarks of their respective
companies.

B Trademarks
REALOQOS, SOFTUNE aretrademark of Fujitsu Semiconductor Limited, Japan.
Note: F2MC is the abbreviation of FUJITSU Flexible Microcontroller.

Microsoft, Windows and Windows Media are either registered trademarks of Microsoft Corporation in the
United States and/or other countries.

The company names and brand names herein are the trademarks or registered trademarks of their respective
owners.

B Organization of This Manual
This manual consists of the following 2 chapters.
CHAPTER 1 BASIC FUNCTIONS

This chapter describes the basic functions on the SOFTUNE Workbench.
CHAPTER 2 DEPENDENCE FUNCTIONS

This chapter describes the functions dependent on each Debugger.

» The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.

» Theinformation, such as descriptions of function and application circuit examples, in this document are presented solely for the
purpose of reference to show examples of operations and uses of FUJTSU SEMICONDUCTOR device; FUJTSU
SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you
develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such
use of the information. FUJ TSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use
of the information.

* Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license
of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU
SEMICONDUCTOR or any third party or does FUJTSU SEMICONDUCTOR warrant non-infringement of any third-party's
intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any
infringement of the intellectual property rights or other rights of third parties which would result from the use of information
contained herein.

» The products described in this document are designed, developed and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured,
could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss
(i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life
support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible
repeater and artificial satellite).

Please note that FUJI'TSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages
arising in connection with above-mentioned uses of the products.

* Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.

» Exportation/release of any products described in this document may require necessary procedures in accordance with the
regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

e The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Copyrights © 2004-2011 FUJTSU SEMICONDUCTOR LIMITED All rights reserved.

READING THIS MANUAL

B Configuration of Page
In each section of this manual, the summary about the section is described certainly, so you can grasp an

outline of thismanual if only you read these summaries.
And the title of upper section is described in lower section, so you can grasp the position where you are

reading now.

CONTENTS

CHAPTER 1 BASIC FUNCTIONS ...t e et e et e e e eeaans 1
1.1 Workspace Management FUNCHIONooiiiiii ettt e e e e e et eeee e e e e e e s e e e aannee 2
1.2 Project Management FUNCHIONooiiiiiiiii ittt e e s e e e e s e eaabes 3
1.3 L (o =Tex D 1=T 01T T [T o = P 5
14 MaKE/BUIIA FUNCLION ... ettt oottt e e e e e e e e e e bbbt b et e e e e aaaaeaeaaannannbenaeeaeaaaaaeaas 6

141 L1015 (o] 391 174= 0 =101 (o I = 1T od 1T o ISP 7
15 Include Dependencies ANAlYSIS FUNCHIONooiiiiiiiiiiiiiiiei et e e e e e e e e e e eaanees 9
1.6 Functions of Setting TOOI OPLIONSccoivuiiiiiiiiiie ettt e et e e e b e e e e nnneas 10
1.7 EFrOr JUMP FUNCLION ..oiiiiiiiiie ettt e st e e e st e e e sttt e e e e et be e e e enbeeas 11
1.8 EQItOr FUNCLIONS ...ttt ettt et e e e e e e e e e bbb bbbt e e et e e e e e e e e e e aanbbsbeeeeaaaaeaaaean 13
1.9 StOrNG EXLEINAl EQILOIS ...ccoiiuiiiiiiiiiiiiee ettt ettt e e et e e e et e e e e anbre e e e e 14
O T o] ¢ o To N =T (= ¢ 1 F= I o Yo L PRI 16
1.11 Macro Descriptions Usable in MaNAgETueiiiiiiiiiiiiiiie et 17
1.12 Setting Operating ENVIFONIMENTiiuuiiiiiiiiiiii ettt e e st e e e s s e e e e annneeeeas 21
I T I T o1 T T = 5/ o1 22
1.14 Memory OPEration FUNCHONScoiiiiii ittt e e e e ettt e e e e e e e e e s s e bbbt e e e e e e e e e e e e e e e aaannbebeeeeaeas 23
1.15 REQISIEr OPEIALIONS ...oeiittiieieiiitiitee ettt e ettt e et e e ettt e e e st bt e ee e s b b e et e e s abbb e e e e e abbeeeeeeabbbeeeeesabbneeeeeas 24
1.16 Line Assembly and DiSASSEMDIYcciiiiiiiiii s e e e e e e e e e e —————— 25
I Y/ 0 4 o To [To B LT o T o o 1T T U TR 26

1.17.1 Referring to LOCal SYMDOISooiiiiiiiiieii e 28

1.17.2 Referring to Variable of C LANQUAJEooevveiiiiiiiiiiiii e e n e e 29

CHAPTER 2 DEPENDENCE FUNCTIONS ... 31

2.1][T01F= o g I L= o1 T T = 32

211 Setting Operating ENVIFONMENT ...t e e e e e e e e e e s e aeeeeeeas 34
2.1.1.1 Boot ROM File AUtOMALIC EXECULIONccoviiiiiiieiiiie it 35
2.1.2 INSTIUCTION SIMUIBLION ...eiiiiiii e e e e e s e e e e nneas 36
2.13 MEMOTY SIMUIATIONeiiiiiiiiiii ettt e e ekt e e s st et e e e e s abbb e e e e s aabe e e e e e sanbeeeeeaanes 37
2.1.4 [/O POIt SIMUIBLION ..ottt e e st e s e e e s nn e e e nnre e e annee e e 38
2.15 INEEITUPL SIMUIATION ...eeiiiiie ettt e e e e e e e e e st e e e e eeeae e e e e s annnrnes 39
2.16 RESEE SIMUIALION ...t e e e e e e e s ettt e e e e e e e e e e s eaaennnbeaeeeeaaaaeeaaean 40
2.1.7 Low-Power Consumption Mode SImUIationcccuviiiiiiiieer e r e e e e e 41
2.1.8 STUB FUNCLION ittt et e e e e e oo e s bbbt et e et e e e e e e s s e e abbbbbe et e eeaaeeeesaaannnbbnbneeeaeas 42
2.1.9 21T 1P ERRPR 43
2.1.9. 1 COUE BIEAKccuiriiiieiiiieiie ettt e e s 44
N B - - = =T | PP PTUPTTP PP 46
2.1.9.3 Trace-BUFfEr-FUIl BIE@Kcoeiiiiiiiiiiiiiiiiiiiiiiee e e e e sttt e e e e e e e s s e st e e e e e e e e e e s s anennnnnaeeeeeeas 47
2.1.9.4 GuArded ACCESS BIEaKccuuuiiiiiiiiiiie ittt 48
2.1.9.5 FOICEA BrEAKeeeiiiiiiiiiii ittt oottt ettt e e e e e e s et e bt e e e e e e e e e e e s e e anrnbaees 49
2.1.10 Measuring EXecution CYCIE COUNLeiiiiiiiiiiiei ittt et e e e nbaeeee e 50
2 T I Vo PP PO PP PPPTPUTRTTTTT 52
A I A =11 o T I = (o U PEUR TR 53
2.1.11.2 Displaying Trace DALtAccueiieiiiiiiiiaiiiiiee ettt e et e e e e e e b e e e e e ebns 54

2.1.11.3 Searching TraCE DAtaAeuuiiiiiiieiaiiiiit et e ettt e e e e e e e e e e s et eeeeaaaeeaeaeaannnanbeeeeaeas 55

2.1.10.4 SAVING TrACE DALA ...covveiiieiiiiiie ettt ettt e e e e bt e e e e et b e e e e e bb e e e e e anbbe e e e e annbeas 56

p A N A V1T T U T g o @0 1Y =] = Vo [P 57
2.1.12.1 Coverage Measurement PrOCEAUIESooiiiiiiiiiaiitiiee ettt e e 58
2.1.13 Checking Debugger INfOrMALIONcueiiiiiiiiiiie et ee e e 61
2.2 Emulator DEbUQQEr (MB2LAL) ...uuuuiiiiiie it s s eeeeeeaerrareanrananan 63
221 Setting Operating ENVIFONMENToiiiiiiiiieiiiiiie ettt s e e s e e nnnreeee s 64
2.2.1.1 MCU OPEratioN MOUEooiiiiiiiieiiiiieie ettt st e et e e s s it e e e s e bbbe e e s e sabbeeeeeeaneee 65
A B B = o0 T Y (=T R ET PP T P STPRPP 67
2.2.1.3 MEMOIY AICa TYPES ...ttt ettt e e ettt e e e e e e e s et e e e e e e e e n e e s 68
P N |V 1= 4 To) VY F= o o 1 o OO PR PRP 71
2.2.1.5 Timer Minimum Measurement UNItc.uuiiiiiiiiiea e e ea e 73
222 Notes on Commands for EXeCUtiNG PrOgIamc.eoiiiiiiiiiiiiiiiie et 74
2.2.3 Commands Available during Execution of User Programccccccceviiviiiiiieeieeeeeeee e cevnveeeee e 76
2.2.4 ON-the-fly MEMOIY ACCESS ...eeeiiiiiii ettt et e e e e e e e s e e bbbt ettt e e e e e e e e e aaannnbnbeeeeaeas 77
225 2T 1= 1 PR 79
2.2.5. 1 COUE BIEAKeeeiiiiiiiieie ettt 80
2.2.5.2 DAA BIEAKeeeeiiiiiiieii ittt e e e e e e e e e e e bbb et e eeaaaaaae e e e e e nrnraees 82
2.2.5.3 SEQUENLIAI BrEAK ...ccciiiiiiieiiiiiiee ettt e e e 83
2.2.5.4 GUArded ACCESS BIEAKcccueiiiiiiiiiiie ittt 84
2.2.55 Trace-BUuffer-FUll BrEaKooiiiiiiiiiiiiiiiii ettt e e 85
2.2.5.6 Performance-Buffer-FUll Breakccooiiiiiiiiiiiie et 86
2.2.5.7 FOICEA BreaKoeiiiiiiiiiiit ettt 87
2.2.6 Y] 0 S TP PPP PP 88
2.2.6.1 Operation in NOrMal MOOEccoiiiiiiiiiiiiii ettt e e e e nbbe e e e e neee 90
2.2.6.2 Operation in Multi Trace MOUEcooiiiiiiiiiii et e e e e e e 92
2.2.6.3 Operation in Performance MOOEcocuiiiiiiiiiiiiiie et 94
2.2.7 (0] 170 I o) AST=To U 1T o [od =] SO PPUPTRPPPN 96
A 8 R < 11 0T ST To [=T o (o]] PP URTT P TR 97
2.2.7.2 Brea@k DY SEOUENCETeeiiiiiiitiite ettt ettt e et e e e e et e e e s e et e e e e e ennbbe e e e e neee 99
2.2.7.3 Trace Sampling Control BY SEQUENCETuuuiiiiiiiiee e e e r e e e e e e e e e snnnne 100
2.2.7.4 Time Measurement DY SEOQUENCETcccuuuiiiiiiiiiiae e 102
2.2.7.5 Sample Flow of Time Measurement By SEQUENCEToocuiiiiiiiiiiiee e 103
2.2.8 REAIHIME TIACE ..eiiiiiiiiiiiee ettt ettt e rt et e st e nr e e s ne e e s e e nnneas 105
2.2.8.1 SINGIE TTACE oiiiiiiiee ittt ettt e e et e e e e s aa b et e e e e bbb et e e s s b e e e e e e anr e e e e s ab b e e e e ane 106
2.2.8.2 SEttiNg SINGIE TIACEeiiiiiiiiiiiieiittie ettt e st e ettt e e e s bt e e e e aabe e e e e abbeeeeeannees 108
2.2.8.3 MU TFBCE ..eeiiiiieeiiiiie ettt s e e sa et e st e s e Rt e R et e nnreas 110
2.2.8.4 SettiNng MU TIBCE ...eeiiiieiiitie ettt e et e e et e e e e anb e e e e e nb e e e e annees 112
2.2.8.5 Displaying Trace Data Storage STAtUScoociiiieiiiiiiiieiiie e 113
2.2.8.6 Specify Displaying Trace Data STartccccceeiiieieeeiiiiiiiiiiiniee e ee e s s e e e e e e e e s e snnnneeees 114
2.2.8.7 Display FOrmat Of TraCe DAtaleeeiiiiiiiiieiiiiiie ettt eebee e e 115
2.2.8.8 Reading Trace Data ON-the-flyoooiiiiiiii e 119
A s e IS Y- V][aTo N = Tod =T D - - PSSR 121
229 MeasUuring PerfOIMENCEcooiiiiiiiiiiiii ettt e e e aannee e s 122
2.2.9.1 Performance Measurement PrOCEAUIEScccoiieiiriiieiriie e 123
2.2.9.2 Display Performance Measurement Dataooovvviiiiiiiiiiiiiiiiiiis e 125
2.2.10 MEASUINNG COVEIAGE ...cciitiiiieeiitiie e e e ittt e e e sttt e e e e ettt e e e s abb et e e e e aab et e e e e st be e e e e aasbaeeeeeaabbeeeeeaabreeeeeans 126

Vi

2.2.10.1 Coverage Measurement PrOCEAUIESuuuiiiiiiiaaaaie ittt e e e e e e e ee e e e e e e e e e s e e nneeeeees 127

2.2.11 Execution TiMe MEASUIEIMENTuuiiiiiiieeeeiieiitiiieeireeeeee e s s s sanetteearetreeeeeessssanraneeerreeaaeaessaanaanns 131
2.2.12 Sampling by EXternal Probeooooiiiiiiiiiiiiies e a e e e e e e 133
2.2.13 Checking Debugger INFOrMALIONccuueiiiiiiiiiie et e e eee e 135
2.3 Emulator Debugger (MB2LA7-00)ccooiuiiiieiiiiiiee ettt et e e e s e e e s sbbe e e e e nees 137
2.3.1 Setting Operating ENVIFONMENT ...t a e e as 138
2.3.1.1 Monitoring Program AutoMAatiC LOBINGcceiiiuiriiieiiiiiiiee ittt e e 139
2.3.1.2 MCU OPEration MOUEccoiiiiiieiiiiiiie ettt ettt e e st e e s et e e e e s bbe e e e e enees 140
2.3. 1.3 DEBUG AFBA ...eeeeiiiiiiie ettt e et e e e e e e e e e b b e et e e e e e e e e e e e e anbaaneees 141
2.3.1.4 MEMOTY AFCa TYPES .ottt ittt ettt ettt e e e e e e s e e e ettt e e e e e e e s e st e ettt ee e e e e e s nanearree 142
P B T |V = 4o To VY, F= T o o1 o PR RRP 144
2.3.1.6 DEDUG FUNCLION ..oiiiiiiiiie ettt e e e e e e e bbb e e e e e e e e e e e e e e annbeeeees 146
A T T V=Y o 1Y o o = PRSP 147
2.3.2 Notes on Commands for EXeCUtING PrOQramuuuuiiiiieeeeoiiiiiiiiiieireseeeesessessnnssnnereeeeeeesesnnnnnes 148
2.3.3 Commands Available during Execution of User Programccccooiiiiiiiiiiiieeee e 150
234 2T 1= 1R SUPPRRRR 152
2.3.4.1 COUE BIEAKeeeeiiiiietie ettt 153
2.3.4.2 DAA BIrEAKeeeeiiiiiiii it e aneaeeeees 155
2.3.4.3 MONitoring Data Breakcueeiiiiiiiiiiiiiiiie e 156
A R N A ST =Y B L= a1 (= L = Y- | RN 157
2.3.4.5 GUArded ACCESS BIEAKuuuiiiiiiiieieii ittt ettt e e e e e e e e e st eee e e e e e e e e e annanreees 158
2.3.4.6 Trace-BUfer-FUIl BrEAKceiiiiieeiiiiiiiiiiiieiie et e e e s e s s st e e e e e e e e e s s s snnesteaaeeeaeeeeeesansnnnsnnnnees 159
2.3.4.7 Performance-Buffer-FUll Breakcoiiiiiiiiiiiiiii et 160
2.3.4.8 EXternal TrHQQEr BIrEaKccoiuiiiiiiiiiiiie ettt st e e et e e e e s bbnee e e e 161
A e o (o =T [= (-1 162
235 (7] a1 d0] I o) ST To [U=T o (o= Cu TP PP TR 163
P2 Y0 R Y= 1 1] (o IS T=To [=] [Y T PSP PP PUP T OUPPRP 165
2.3.6 [T T= 1141 I I - Vo TSP 167
2.3.6.1 Setting SINGIE TrACEiiiueeeiiiiiiiiiee ettt e e e e e et et e e e e e e e e e e s s aab bbb e aeeeaaaaeeasaaeannbneeees 170
A TG 2 |V 11 T I = T = SRR 171
2.3.6.3 Setting Methods Of MUIti TFACEcccvieeiiiiiiciieeec e e e e e e e e e e s e e snnnne 174
2.3.6.4 Displaying Trace Data StOrage StAtUSccccoeiooiiiiiiiiiiiiiieeae e e e e e e eeaeeees 176
2.3.6.5 Specify Displaying Trace Data Storage Statuscccceeeiriiiieeiiiiiiee e 177
2.3.6.6 Display FOrmat of TraCe Dataccceeiiiiiiuiiiiiiiiiiee e ces st rr e e e e e e s e e ss s are e e e aaeee e e s s ennneeees 178
2.3.6.7 Reading Trace Data ON-the-fly ... 182
2.3.6.8 SAVING TraC DALA ...cocuvveiieiiiiiiee ettt e ettt e e e et e e e s e bt e e e e b e e e e e 183
2.3.7 MeEAaSUNNG PEITOMMANCEcoiiiiiiiii i e r e e e e e e s e e e e e et e e e e e e s e e sanrrarerrreaaeaeaaeas 184
2.3.7.1 Performance MeasuremMent PrOCEAUIESccuuiiiaiiiiiiieeiiiiee e sttt e e e e e s e e 185
2.3.7.2 Display Performance MeasuremMent DAtaceeeiiiiiiiiaiiiiiiee ettt siiree e e e 187
2.3.8 MEASUINNG COVEIAGE ..vvreeiiiiieeeeisiiiiitttttereeaeeaeesaaasstasaeeereeaaeesaaaasssasteeareeeaaessssaaasntasrrereeaaeeeenenanns 188
2.3.8.1 Coverage Measurement PrOCEAUIESiiiiiiiiiiieiiiiie ettt e 189
2.3.9 Y1 (T g L= o] a1 (o] 1 o PR PTPPPPPRORIPRR 192
2.3.10 Execution TiMe MEASUIEMIENTcoiiriiiieiiriiieeesireeee ettt e e s s e e e s s e e e s s e e e s s snnreeeessnreeeeeenas 193
2.3.11 POWEI-0N DEDUGGING ..eieiiuttiteieiitiie ettt e et e e s st e e e sttt e e e s anbe et e e e aabbeeeeeeannreeeeeaas 195
2.3.12 RAM CRECKET ...ttt ettt e e n e n e s n et e e 196
2.3.13 Checking Debugger INfOrMationuuumiuiiiiiii e e e e e e e e e e e 200
24 Emulator Debugger (MB2LA7-05)cccoiiiiiiieaiiiiiee ettt ettt e e e et e e e e abe e e e e nees 202

Vi

24.1 Setting Operating ENVIFONMENT ... e e e e e e e e e aaaa s 203
2.4.1.1 Monitoring Program AutomMAatiC LOAINGceeiiiiiiiiiiiiiiiie ettt 204
2.4.1.2 MCU OPEration MOOEuuuuuuuuuiiiiiiiei et et e e e e e e et et et et eee e aate e ee s s s e s e aaeaaaaaaaaeaeeeeeseeseesrnrnnes 205
2.4.1.3 DEDUG ATBA ittt a e e e e e 206
2.4 1.4 MEMOTY AICA TYPES .ottt t et et ettt e e e e e e s s e s e b e ettt e e e e e e s as s bbb e et e eeeeeeeessaannnnne 207
A I |V (=10 o VAN Y/ F= T o] o T TSP UPT TR TTPOP 209

242 Notes on Commands for EXeCUtiNg PrOgramc..ooiiiiiiiiiioiiiiiiee ettt 211

243 Commands Available during Execution of USer Program cccccceeeviiiieiieiniiiee e 213

24.4 [T 1 PP PR T PR ROUPPPPRPTRP 214
2441 COUE BIEAK ...ttt e e e e e e e e nees 215
A T\ - T 2 1= P 217
2.4.4.3 GUArdEd ACCESS BIEAKuueiiiiiiiieiei ittt e e e e e e e et e e e e e e e e e e e e annbnree s 218
2.4.4.4 Trace-BUuffer-FUll BrEaKcoooiiiiiiiiiii et 219
2445 FOICEU BIEAK ...ooiiiiiiiiiie ittt ettt et et s et e e e r et 220

245 REAI-HIME THACE ...ttt ettt e e e e e e e e bbbt e et et e e e e e e s e e annbabrbaeaaaaeeeaaanns 221
2451 SENG TIACE .iiieeiiie ittt ettt ettt e e ettt e e e et bt e e e e ek b bt e e e e et b et e e e e bbbt e e e e nbn e e e e e e nnbreeeeannnes 223
2.4.5.2 Displaying Trace Data Storage StatUSccceeeeeeiiiiiiiiiiiniierieeeeeessssinrnineerrereeeeeesanennennneees 224
2.45.3 Specifying Displaying Trace Data STArt ...t e e e 225
2.45.4 Display FOrmat Of TraCe DAtac.veeeieiiiiiiiei ittt 226
2.455 Reading Trace Data ONn-the-fly ... 230
2456 SAVING TraC DALA ...cccuvveiieiiiiiiie ettt e et e e et e e e e e b e e e e e 231

2.4.6 Measuring EXecution CYCIE COUNTeiiiiiiiiiiei ittt ree e snaeaee e s 232

25 Emulator Debugger (MB2198)cooiiiiiiiiiiiiei ettt e e e e e e e e e e e e e e e aan 233

251 Setting Operating ENVIFONMENTooiiiiiiiiiie ittt e s e e sanneeees 234
2.5.1.1 Monitoring Program AutomMatic LOAINGcceviiiiiiiiiiiiiiiee ittt 235
2.5.1.2 Boot ROM File AUtOMALIC EXECULIONccuieiiiiiiiiiieee ettt e e e e e e e saneee 236
2.5.1.3 MCU OPEration MOTEccooiiuiiiieiiiiiiie ettt ettt ettt et e e st e e et b e e e s abe e e e e s anbeeeeeeaanes 237
2.5.1.4 Operation FrequeNCY CONIOLcuuiiiiiiiiiiie ittt e e e abee e e e 238

25.2 Notes on Commands for EXeCUtiNg PrOQIamuuuiiiiiiiiiiiiiiiiieiee e ee e e e 239

253 Commands Available during Execution of USer Program occcccceeviiiieiieniiiiene e 240

254 BIEAK ..ttt nnreas 242
2541 COUC BIEAKeeeeeiiiiiiieii ettt e e e e e e e aa e e e e e e e e e e e e e anabaneees 243
2.5.4.2 DAB BIEAK ...cooiiiiiiiiee ittt e e e 245
2.5.4.3 Guarded ACCESS BrEakocciiiiiiiiiiiiie et 246
2.5.4.4 SEQUENTIAI BrEAKccoiuiiiiiiiiiiiiii ettt ettt e et e st e e e e e s b e e e e 247
2545 Trace-Buffer-FUll BrEaKcoooiiiiiiiiiiii et 248
2.5.4.6 Performance-Buffer-FUll Break ...t 249
2.5.4.7 EXternal THQQEr BrEaKccoiuiiiiiiiiiiiii ettt ettt e st e e e s s stb e e e e s e 250
2.5.4.8 FOrCEA Breakooiiiiiiiiiiii ittt e e 251

255 (O70] a1 o] I o) VS T=To [= o7 = RSP 252
2551 Operating Of SEQUENCETcouuiiiieiiiiii ettt ettt e et e e et e e e e e e e nbr e e e e enees 254

256 REAIIIME TIACE ..iiiiiiiiiii ittt e e ettt e e e s st bt e e s s bbbt e e e s snbbe e e e e s abbbeeeesnnbeeeeeans 256
AT Tt R S 1Y i 1] o I = Vo = PSRN 258
2.5.6.2 Displaying Trace Data StOrage STAtUScoocueiiiiiiiiiiieiiiie e 260
2.5.6.3 Specifying Displaying Trace Data STartcccccceeiiiiiiiiiiiiiieiree e e ee s s ssssierrrereeee e e e e e s ssennnenes 261
2.5.6.4 Display FOrmat Of Trace Dataccccoieiiiiieieiiiiiie s s e s e e e e e e e e e e e e e e e e e aeeaeesenenrnnarnnes 262
2.5.6.5 SAVING TraC DAAccuvviiiiiiiiiiee ettt e e e et e e e sab e e e e b e e e e e 265

viii

257 Measuring PerfONMANCEooii it e e e e e e e e e et eeeeaaaaaee e s 266

2.5.7.1 Performance MeasuremMent PrOCEAUIESoccuuiiiiiiiiiiieiiiiiie ettt 267
2.5.7.2 Display Performance Measurement Dataoooovviiiiiiiiiiiiiiiii s 268
2.5.8 EXecution TimMe MEASUIEIMIEINToiiiiiiiiieiitiiiee ettt ettt e sttt e e st e e e sib e e e e e st e e e e s anrneeeeeans 269
259 POWET-ON DEDUGUING ..iiiiiiiiiiei ittt et ettt e e st e e e st e e e e e abbeeeeeaa 271
2.6 Emulator Debugger (MB2L00-0L1)cciiiiiiiiii et s s e s e s e e e e e e e e e aeaaeeeeaeaeeaarernrnne 272
26.1 Starting deDUGGINGeeeeieiiiiiiiee et e s e e s et e e s e e e e e e annn s 273
2.6.1.1 Operating Environments Of the Target ... 274
A T S T Tor U [PP PUTT TR TRPPP 276
2.6.2 ENAING AEDUGGING ...ttt ettt e et e e e et e e e e sbb e e e e e aabaeeeeeans 277
2.6.3 Efficiently EXeCUtiNg DEDUGGING ...eoiiiiiiiiiieiiiiiiee ettt e ee e et ee e 278
2.6.3.1 Increasing Communication Speed during Debuggingccccceiiiiiiiiiiiiiii 279
2.6.3.2 Switching Debug FUNCLIONcooiiiiiiiiiiiiiiie et 280
2.6.4 [CCTo U 1o T =d (0T | 7= o OSSR 281
2.6.4.1 Setting/Release of Debug FUNCLIONSuiiiiiiiiiiiiiiieee e 282
IR S |V o o 11 o ¢ o o O ST URT T PPPPPPN 284
A T B = o 1YY= o] 1= o 1H o TP 285
2.6.4.4 Notes on Commands for EXecuting Programoooiuiiiiiiiiieiee e 287
2.6.5 TO ACCESS the FIash MEMOIYcooiiiiiiiiii e e 289
2.6.6 To Interrupt the Program EXecution [Break]uuuuuiiiiiiiiniiiei e eeee e 293
2.6.6.1 Code Break (HArOWAIE)c..eiieiiiiiiiee ittt et e et e e et e e s e b e e e 294
2.6.6.2 Code Break (SOIWAIE)ccoiiiiiiiiiiiieie ettt et e st e e e e sbb e e e e eaees 296
2.6.6.3 DAB BIEEKccoiuiiiiiieiiiii ettt 297
2.6.6.4 FOrCeA Breakoooiiiiiiiiiiiiie et 298
2.6.6.5 Data WaLCh Breakoooiiiiiiiiii et 299
2.6.6.6 SEOUEINCELciiiiiiiiiieieeete ittt e oot et e e e e e e e ee e et e ettt ettt e s be e bebab e o e oe o e e e e e e e e e eeeeaeteeteeeennerebrrnre 301
2.6.7 Measuring the Program Execution CYCle COUNLcooiiiiiiiiiiiiiiee e 304
2.6.8 Measuring Event-to-Event Execution Cycle Count [Performance Measurement] 306
2.6.8.1 Measuring PerfOrManCeoooiiii ittt et ee e e e e e e e e e s e nnbeeeeees 308
2.6.9 Viewing Program Execution HiStOry [TIaCE]cueeeiiiiiiiiieiiiiiieee sttt 310
2.6.9.1 Displaying TracCe DAtaccccuvuiemiiiieeeiiiiiiiiiiiieee e ee e e s s s s sssare e e rreaeeeessssnnsnreeaeeeeeeaeeesseannnnnnes 312
2.6.9.2 Trace Data Display Examples (RAW Data)ccooiiiiiiuiiiiiiiiiaeiaee e 314
2.6.9.3 Trace Data Display Example (INSTTUCHION)cuviiiiiiiiiiiieiiiieee e 315
2.6.9.4 Trace Data Display EXample (SOUICE)cuuuiiiiiiieiiiiiiiiiiiiieeeee e e e e e e e er e e e e e e e e s s e nnannnnnes 316
2.6.9.5 SAVING TraC DALouvveiieiiiiiiee ettt e et e e et bt e e e e e e e 317
2.6.9.6 Searching for Trace DAtAccooiuiiiiiiiiiiiee et 318
2.6.10 How to Display the Output Message from User Program to the Debuggerccccccvveveeeninnnn. 319
2.6.11 Checking Debugger INFOrMALIONcuueiiiiiiiiiie et e s eee e 321
2.7 o] T 1 (T g T=T o TN o o [T TP PPUT T PRRP 323
2.7.1 Resources Used by MONItOr PrOgramccooiiiiiiiiiiiiiiiccee e ccsineeee e e e e e e e e e s sanntenne e e e e e e e e e s e nnnes 324
2.7.2 2 1= RSP PERRR 325
A o | 1T T 1= = (- |G 326
2.7.2.2 FOIrCEA Breakoooiiiiiiiiiii ittt 327
315 PP 329

CHAPTER 1

BASIC FUNCTIONS

This chapter describes the basic functions on the
SOFTUNE Workbench.

1.1 Workspace Management Function

1.2 Project Management Function

1.3 Project Dependence

1.4 Make/Build Function

1.5 Include Dependencies Analysis Function
1.6 Functions of Setting Tool Options

1.7 Error Jump Function

1.8 Editor Functions

1.9 Storing External Editors

1.10 Storing External Tools

1.11 Macro Descriptions Usable in Manager
1.12 Setting Operating Environment

1.13 Debugger Types

1.14 Memory Operation Functions

1.15 Register Operations

1.16 Line Assembly and Disassembly

1.17 Symbolic Debugging

CHAPTER 1 BASIC FUNCTIONS

1.1 Workspace Management Function

This section explains the workspace management function of SOFTUNE Workbench.

B Workspace
SOFTUNE Workbench uses workspace as a container to manage two or more projects including subprojects.
For example, a project that creates a library and a project that creates a target file using the project can be
stored in one workspace.

B Workspace Management Function
To manage two or more projects, workspace manages the following information:
¢ Project
« Active project
* Subproject

B Project
The operation performed in SOFTUNE Workbench is based on the project. The project is a set of files and
procedures necessary for creation of atarget file. The project file contains all data managed by the project.

B Active Project

The active project is basic to workspace and undergoes [Make], [Build], [Compile/Assemble], [Start Debug],
and [Update Dependence] in the menu. [Make], [Build], [Compile/Assemble], and [Update Dependence]
affect the subprojects within the active project.

If workspace contains some project, it always has one active project.
B Subproject

The subproject is a project on which other projects depend. The target file in the subproject is linked with the
parent project of the subproject in creating atarget file in the parent project.

This dependence consists of sharing target files output by the subproject, so a subproject is first made and
built. If making and building of the subproject is unsuccessful, the parent project of the subproject will not be
made and built.
Thetarget file in the subproject is however not linked with the parent project when:
* An absolute (ABS)-type project is specified as a subproject.
* Alibrary (LIB)-type project is specified as a subproject.
B Restrictions on Storage of Two or More Projects
Only one REALOS-type project can be stored in one workspace.

CHAPTER 1 BASIC FUNCTIONS

1.2 Project Management Function

This section explains the project management function of SOFTUNE Workbench.

B Project Management Function

The project manages all information necessary for development of a microcontroller system. Especialy, its
major purpose is to manage information necessary for creation of atarget file.

The project manages the following information:
- Project configuration
- Active project configuration
- Information on source files, include files, other object files, library files
- Information on tools executed before and after executing language tools (customize build function)
B Project Format
The project file supports two formats: a ‘workspace project format,' and an 'old project format.'
The differences between the two formats are as follows:
Workspace project format
- Supports management of two or more project configurations
- Supports use of all macros usable in manager
- Does not support early Workbench versions(*)
Old project format
- Supports management of just one project configuration

- Limited number of macros usable in manager
For details, see Section "1.11 Macro Descriptions Usable in Manager".

- Supports early Workbench versions(*)
When anew project is made, the workspace project format is used.
When using an existing project, the corresponding project format is used.

If a project made by an early Workbench version(*) is used, a dialog asking whether to convert the file to the
workspace project format is displayed. For details, refer to Section "2.13 Reading SOFTUNE Project Files of
Old Versions' of "SOFTUNE Workbench Operation Manual".

To open a project file in the workspace project format with an early Workbench version(*), it is necessary to
convert the file to the old project format. For saving the file in other project formats, refer to Section "4.2.7
Save As' of "SOFTUNE Workbench Operation Manual”.

*: F2MC-16: V30L26 or earlier

B Project Configuration

The project configuration is a series of settings for specifying the characteristics of atarget file, and making,
building, compiling and assembling is performed in project configurations.

Two or more project configurations can be created in a project. The default project configuration name is
Debug. A new project configuration is created on the setting of the selected existing project configuration. In
the new project configuration, the same files as those in the original project configuration are always used.

By using the project configuration, the settings of programs of different versions, such as the optimization

3

CHAPTER 1 BASIC FUNCTIONS

level of acompiler and MCU setting, can be created within one project.

In the project configuration, the following information is managed:

Name and directory of target file

Information on options of language tools to create target file by compiling, assembling and linking
source files

Information on whether to build file or not
Information on setting of debugger to debug target file

B Active Project Configuration
The active project configuration at default undergoes [Make], [Build], [Compile/Assemble], [Start Debug],
and [Update Dependence].

The setting of the active project configuration is used for the file state displayed in the SRC tab of project
window and includes files detected in the Dependencies folder.

Note:

If a macro function newly added is used in old project format, the macro description is expanded at the
time of saving in old project format. For the macro description newly added, refer to Section "1.11
Macro Descriptions Usable in Manager".

CHAPTER 1 BASIC FUNCTIONS

1.3 Project Dependence

This section explains the project dependence of SOFTUNE Workbench.

B Project Dependence
If target files output by other projects must be linked, a subproject is defined in the project required in
[Project] - [Project Dependence] menu. The subproject is a project on which other projects depend.
By defining project dependence, a subproject can be made and built to link its target file before making and
building the parent project.
The use of project dependence enables simultaneous making and building of two or more projects devel oped
in one workspace.
A project configuration in making and building a subproject in [Project] - [Project Configuration] - [Build
Configuration] menu can be specified.

CHAPTER 1 BASIC FUNCTIONS

1.4

Make/Build Function

This section explains the make/build function of SOFTUNE Workbench.

B Make Function

Make function generates a target file by compiling/assembling only updated source files from al source files
registered in aproject, and then joining all required object files.

This function allows compiling/assembling only the minimum of required files. The time required for
generating atarget file can be sharply reduced, especially, when debugging.

For this function to work fully, the dependence between source files and include files should be accurately
grasped. To do this, SOFTUNE Workbench has a function for analyzing include dependence. To perform this
function, it is necessary to understand the dependence of a source file and include file. SOFTUNE
Workbench has the function for analyzing the include file dependence. For details, see Section "1.5 Include
Dependencies Analysis Function™.

B Build Function

Build function generates a target file by compiling/assembling al source files registered with a project,
regardless of whether they have been updated or not, and then by joining all required object files. Using this
function causes all files to be compiled/assembled, resulting in the time required for generating the target file
longer. Although the correct target file can be generated from the current source files.

The execution of Build function is recommended after completing debugging at the final stage of program
development.

Note:

When executing the Make function using a source file restored from backup, the integrity between an
object file and a source file may be lost. If this happens, executing the Build function again.

CHAPTER 1 BASIC FUNCTIONS

1.4.1 Customize Build Function

This section describes the SOFTUNE Workbench to set the Customize Build function.

B Customize Build function
In SOFTUNE Workbench, different tools can be operated automatically before and after executing the
Assembler, Compiler, Linker, Librarian, Converter, or Configurator started at Compile, Assemble, Make, or
Build.

The following operations can be performed automatically during Make or Build using this function:
- dtarting the syntax check before executing the Compiler,
- dfter executing the Converter, starting the S-format binary Converter (m2bs.exe) and converting
Motorola S-format files to binary format files.
B Setting Options
An option follows the tool name to start a tool from SOFTUNE Workbench. The options include any file
name and tool-specific options. SOFTUNE Workbench has the macros indicating that any file name and tool-
specific options are specified as options.
If any character string other than parametersis specified, it is passed directly to the tool. For details about the
parameters, see Section "1.11 Macro Descriptions Usable in Manager”.
B Macro List
The Setup Customize Build dialog provides a macro list for macro input. The build file, load module file,
project file submenus indicate their sub-parameters specified.

The environment variable brackets must have any item; otherwise, resulting in an error.

Table 1.4-1 Macro List

Macro List Macro Name
Build file %(FILE)
Load modulefile %(LOADMODULEFILE)
Project file %(PRJFILE)
Workspace file %(WSPFILE)
Project directory %(PRJPATH)
Target file directory %(ABSPATH)
Object file directory %(OBJPATH)
List file directory %(LSTPATH)
Project construction name %(PRIJCONFIG)
Environment variable %(ENVI])
Temporary file %(TEMPFILE)

CHAPTER 1 BASIC FUNCTIONS

Note:
When checking [Use the Output window], note the following:
e Once atool is activated, Make/Build is suspended until the tool is terminated.

« The Output window must not be used with a tool using a wait state for user input while the tool is
executing. The user can not perform input while the Output window is in use, so the tool cannot be
terminated. To forcibly terminate the tool, select the tool on the Task bar and input Control - C, or
Control - Z.

1.5

CHAPTER 1 BASIC FUNCTIONS

Include Dependencies Analysis Function

This section describes the function of the Include Dependencies Analysis of SOFTUNE
Workbench.

B Analyzing Include Dependencies

A source file usualy includes some include files. When only an include file has been modified leaving a
source file unchanged, SOFTUNE Workbench cannot execute the Make function unless it has accurate and
updated information about which source file includes which include files.

For this reason, SOFTUNE Workbench has a built-in Include Dependencies Analysis function. This function
can be activated by selecting the [Project] - [Include Dependencies] menu. By using this function, uses can
know the exact dependencies, even if an include file includes another include file.

SOFTUNE Workbench automatically updates the dependencies of the compiled/assembled files.

Note:

When executing the [Project] - [Include Dependencies] menu, the Output window is redrawn and
replaced by the dependencies analysis result.

If the contents of the current screen are important (error message, etc.), save the contents to a file and
then execute the Include Dependencies command.

CHAPTER 1 BASIC FUNCTIONS

1.6 Functions of Setting Tool Options

This section describes the functions to set options for the language tools activated from
SOFTUNE Workbench.

B Function of Setting Tool Options
To create a desired target file, it is necessary to specify options for the language tools such as a compiler,
assembler, and linker. SOFTUNE Workbench stores and manages the options specified for each tool in
project configurations.
Tool options include the options effective for al source files (common options) and the options effective for
specific source files (individual options). For details about the option setting, refer to Section "4.5.5 Setup
Project” of "SOFTUNE Workbench Operation Manual".
- Common options
These options are effective for all source files (excluding those for which individua options are
specified) stored in the project.
- Individual options
These options are compile/assemble options effective for specific source files. The common options
specified for source files for which individual options are specified become invalid.

B Tool Options
SOFTUNE Workbench the macros indicating that any file name and directory name are specified as options.

If any character string other than parametersis specified, it is passed directly to the tool. For details about the
parameters, see Section "1.11 Macro Descriptions Usable in Manager”. For details about the tool options for
each tool, see the manual of each tool.

10

1.7

CHAPTER 1 BASIC FUNCTIONS

Error Jump Function

This section describes the error jump function in SOFTUNE Workbench.

B Error Jump Function

B Syntax

When an error, such as a compile error occurs, double-clicking the error message displayed in the Output
window, opens the source file where the error occurred, and automatically moves the cursor to the error line.
This function permits efficient removal of compile errors, etc.

The SOFTUNE Workbench Error Jump function analyzes the source file names and line number information
embedded in the error message displayed in the Output window, opens the matching file, and jumps
automatically to the line.

The location where a source file name and line number information are embedded in an error message, varies
with the tool outputting the error.

An error message format can be added to an existing one or modified into an new one. However, the modify
error message formats for pre-installed Fujitsu language tools are defined as part of the system, these can not
be modified.

A new error message format should be added when working the Error Jump function with user register. To
set Error Jump, execute the [Setup] - [Error Jump Setting] menu.

An error message format can be described in Syntax. SOFTUNE Workbench uses macro descriptions as
shown in the Table 1.7-1 to define such formats.

To analyze up to where %f, %h, and %* continue, SOFTUNE Workbench uses the character immediately
after the above characters as a delimiter. Therefore, in Syntax, the description until a character that is used as
adeimiter re-appears, is interpreted as a file name or a keyword for help, or is skipped over. Touse % asa
delimiter, describe as %%. The %[char] macro skips over as long as the specified character continues in
parentheses. To specify "]" as a skipped character, describe it as "\]". Blank characters in succession can be
specified with asingle blank character.

Table 1.7-1 List of Special Characters String for Analyzing Error Message

Characters Semantics
%f Interpret as source file name and inform editor.
%l Interpret as line number and inform editor.
%h Become keyword when searching help file.
%* Skip any desired character.
%] char] Skip aslong as charactersin [] continues.

11

CHAPTER 1 BASIC FUNCTIONS

[Example]
okx % (%) 9%h: or, Y] % (%) %h:

The first four charactersare "*** ", followed by the file name and parenthesized page number, and then
the keyword for help continues after one blank character.

This represents the following message:
***C :\ Sanpl e\ sanpl e. ¢(100) E4062C. Syntax Error: near /int.
B Reference Section
Setup Error Jump

12

CHAPTER 1 BASIC FUNCTIONS

1.8 Editor Functions

This section describes the functions of the SOFTUNE Workbench built-in standard editor.

B Standard Editor
SOFTUNE Workbench has a built-in editor called the standard editor. The standard editor is activated as the
Edit window in SOFTUNE Workbench. As many Edit windows as are required can be opened at one time.

The standard editor has the following functions in addition to regular editing functions.

Keyword marking function in C/assembler sourcefile
Displays reserved words, such asif and for, in different color

Error line marking function
The error line can be viewed in adifferent color, when executing Error Jump.

Bookmark setup function
A bookmark can be set on any line, and instantaneously jumps to the line. Once a bookmark is set, the
lineis displayed in adifferent color.

Ruler, line number display function
The Ruler is a measure to find the position on aline; it is displayed at the top of the Edit window. A
line number is displayed at the |eft side of the Edit window.

Automatic indent function

When a line is inserted using the Enter key, the same indent (indentation) as the preceding line is set
automatically at the inserted line. If the space or tab key is used on the preceding line, the same use is
set at the inserted line as well.

Function to display, Blank, Line Feed code, and Tab code
When a file includes a Blank, Line Feed code, and Tab code, these codes are displayed with special
symbols.

Undo function

This function cancels the preceding editing action to restore the previous state. When more than one
character or lineis edited, the whole portion is restored.

Tab size setup function

Tab stops can be specified by defining how many digits to skip when Tab codes are inserted. The
default is 8.

Font changing function
The font size for character string displayed in the Edit window can be selected.

B Reference Section
Edit Window (The Standard Editor)

13

CHAPTER 1 BASIC FUNCTIONS

1.9 Storing External Editors

This section describes the function to set an external editor to SOFTUNE Workbench.

B External Editor
SOFTUNE Workbench has a built-in standard editor, and use of this standard editor is recommended.
However, another accustomed editor can be used, with setting it, instead of an edit window. There is no
particular limit on which editor can be set, but some precautions (below) may be necessary. Use the [Setup] -
[Editor setting] menu to set an externa editor.

B Precautions
- Error jump function
The error jump cannot move the cursor to an error lineif the external editor does not have a function to
specify the cursor location when activated the external editor.
- Filesave at compiling/assembling
SOFTUNE Workbench cannot control an external editor. Always save the file you are editing before
compiling/assembling.
B Setting Options
When activating an external editor from SOFTUNE Workbench, options must be added immediately after
the editor name. The names of file to be opened by the editor and the initial location of the cursor (the line
number). can be specified. SOFTUNE Workbench has a set of special parameters for specifying any file
name and line number, as shown in the Table 1.9-1. If any other character string are described by these
parameters, such characters string are passed asis to the editor.
%f (File name) is determined as follows:
1. If the focusis on the SRC tab of Project window, and if avalid file name is selected, the selected file
name becomes the file name.

2. When avalid file name cannot be acquired by the above procedure, the file name with a focus in the
built-in editor becomes the file name.

%x (project path) is determined as follows:

1. If afocusis on the SRC tab of project window and a valid file name is selected, the project path is a
path to the project in which the fileis stored.

2. If no path is obtained, the project path is a path to the active project.
Also file name cannot be given double-quotesin the expansion of %f macros.

Therefore, it is necessary for you to provide double-quotes for %f. Depending on the editor, there are line
numbers to which there will be no correct jump if the entire option is not given double-quotes.

14

CHAPTER 1 BASIC FUNCTIONS

Table 1.9-1 List of Special Characters for Analyzing Error Message

Parameter Semantics
%% Means specifying % itself
%of Means specifying file name
%l Means specifying line number
%X Means specifying project path

B Example of Optional Settings

Table 1.9-2 Example of Optional Settings

Editor name Argument
WZ Editor V4.0 %f /j%l
MIFES V1.0 %f +%ol
UltraEdit32 %f/%l/1
TextPad32 %f(%0l)
PowerEDITOR %f -g%l
Codewright32 %f -g%l
Hidemaru for Win3.1/95 /j%l:1 %f
ViVi Nline=%l %f

B Reference Section
Editor Setup

Note:

Regarding execution of error jump in Hidemaru:

To execute error jump in Hidemaru used as an external editor, use the [Others] - [Operating
Environment] - [Exclusive Control] menu, and then set "When opening the same file in Hidemaru" and
"Opening two identical files is inhibited".

15

CHAPTER 1 BASIC FUNCTIONS

1.10

Storing External Tools

This section describes the function to set an external tool to SOFTUNE Workbench.

B External Tools

A non-standard tool not attached to SOFTUNE Workbench can be used by setting it as an external tool and
by caling it from SOFTUNE Workbench. Use this function to coordinate with a source file version control
tool.

If atool set as an externa tool is designed to output the execution result to the standard output and the
standard error output through the console application, the result can be specified to output the SOFTUNE
Workbench Output window. In addition, the allow description of additional parameters each time the tool is
activated.

To set an external tool, use the [Setup] - [Setting Tool] menu.

To select the title of a set tool, use the [Setup] - [Activating Tool] menu.

B Setting Options

When activating an external tool from SOFTUNE Workbench, options must be added immediately after the
external tool name. Specify the file names, and unique options, etc.

SOFTUNE Workbench has a set of special parameters for specifying any file name and unique tool options.

If any characters string described other than these parameters, such characters string are passed as is to the
external tool.

For details about the parameters, see Section "1.11 Macro Descriptions Usable in Manager".

Note:

When checking [Use the Output window], note the following:

Once a tool is activated, neither other tools nor the compiler/assembler can be activated until the
tool is terminated.

The Output window must not be used with a tool using a wait state for user input while the tool is
executing. The user cannot perform input while the Output window is in use, so the tool cannot be
terminated. To forcibly terminate the tool, select the tool on the Task bar and input Control - C, or
Control - Z.

B Reference Section

16

Setting Tools
Starting Tools

1.11

CHAPTER 1 BASIC FUNCTIONS

Macro Descriptions Usable in Manager

This section explains the macro descriptions that can be used in the manager of
SOFTUNE Workbench.

B Macros

SOFTUNE Workbench has special parameters indicating that any file name and tool-specific options are
specified as options.

The use of these parameters as tool options eliminates the need for options specified each time each tool is
started.

The type of macro that can be specified and macro expansion slightly vary depending on where to describe
macros. The macros usable for each function are detailed below. For the macros that can be specified for
"Error Jump" and "External Editors’ see Sections "1.7 Error Jump Function" and "1.9 Storing External
Editors".

Bl Macro List

Thefollowing isalist of macros that can be specified in SOFTUNE Workbench.
The macros usable for each function are listed below.

- External tools:. Table1.11-1 and Table 1.11-2

- Customize build: Table1.11-1 and Table 1.11-2

- Tool options: Table1.11-2

The directory symbol \ is added to the option directories in Table 1.11-1 but not to the macro directories in
Table 1.11-2.

The sub-parametersin Table 1.11-3 can be specified in %(FILE), %(LOADMOUDLEFILE), %(PRJFILE).
The sub-parameter is specified in the form of %(PRJFILE[PATH]).

If the current directory is on the same drive, the relative path is used. The current directory is the workspace
directory for %(PRJFILE), and %(WSPFILE), and the project directory for other than them.

17

CHAPTER 1 BASIC FUNCTIONS

18

Table 1.11-1 List of Macros That Can Be Specified 1

Parameter Meaning
%of Passed as full-path name of file. (*1)
%F Passed asmain file name of file. (*1)
%d Passed as directory of file. (*1)
%e Passed as extension of file. (*1)
%a Passed as full-path name of load modulefile.
%A Passed asmain file name of load modulefile. (*2)
%D Passed as directory of load modulefile. (*2)
%E Passed as extension of load modulefile. (*2)
%X Passed as directory of project file. (*2)
%X Passed asmain file name of project file. (*2)

%%

Passed as %.

Table 1.11-2 List of Macros That Can Be Specified 2

Parameter

Meaning

%(FILE)

Passed as full-path name of file. (*1)

%(LOADMODULEFILE)

Passed as full-path name of load modulefile. (*2)

%(PRJIFILE)

Passed as full-path name of project file. (*2)

%(WSPFILE)

Passed as full-path name of workspace file. (*3)

%(PRJPATH) Passed as directory of project file. (*2)
%(ABSPATH) Passed as directory of target file. (*2)

%(OBJPATH) Passed as directory of object file. (*2)
%(LSTPATH) Passed as directory of list file. (*2)

%(PRICONFIG)

Passed as project configuration name. (*2) (*3)

%(ENV [Environment
variable])

Environment variable specified in environment variable bracketsis
passed.

%(TEMPFILE)

Temporary file iscreated and its full-path name is passed. (*4)

Themacrosin (*1) are determined as follows:

- Customize build

1. Source file before and after executing compiler and assembler
2. Target file before and after executing linker, librarian and converter
3. Configuration file before and after executing configuration

CHAPTER 1 BASIC FUNCTIONS

- Tool options
* Null character

- Others
1. Fileasfocusis on the SRC tab of project window and valid file nameis selected
2. Fileon which focusisin internal editor as no valid file name can be obtained in 1
3. Null character if no valid file name can be obtained
The macrosin (*2) are determined as follows:
- Customize build and tool options
« Information on configuration of project under building, making, compiling and assembling

- Others
1. Information on active configuration of project in which file is stored as focus is on the SRC tab of
project window and valid file name is selected
2. Information on active configuration of active project if no valid file name can be obtained in 1

*3: The macro can use only the project of the workspace project format.

*4: The content of atemporary file can be specified only with customize build.

Table 1.11-3 List of Sub parameters 1

Sub parameter Meaning
[PATH] Directory of file
[RELPATH] Relative Path of file
[NAME] Main file name of file
[EXT] Extension of file

[SHORTFULLNAME] Full path name of short file

[SHORTPATH] Directory of short file
[SHORTNAME] Main file name of short file
[FOLDER] Name of folder in which files are stored in the SRC tab of project window

(Can be specified only in %(FILE).)(*)

*: The macro can be used only the project of workspace project format.

B Examples of Macro Expansion
If the following workspace is opened, macro expansion is performed as follows:

Wor kspace : C.\Wsp\ Wp. wsp
Active project : C. \ Wp\ Sanpl e\ Sanpl e. prj
Active project configuration Debug
bj ect directory : C. \ Wp\ Sanpl e\ Debug\ Obj \
Subpr oj ect : C:.\ Subprj\ Subprj . prj
Active project configuration Rel ease
bj ect directory : C:\ Subprj\ Rel ease\ Obj \
Target file : C. \ Subprj\ Rel ease\ Abs\ Subprj . abs

19

CHAPTER 1 BASIC FUNCTIONS

[Example] Macro expansion in external tools

Focusis on Subprj project file in the SRC tab of project window.

%a . C. \ Subprj\ Rel ease\ Abs\ Subprj . abs
YA . SUBPRIJ. abs

%D . C. \ Subprj\ Rel ease\ Abs\

%E . . abs

o FI LE[FOLDER]) . Source Fil es\Common

% PRIFI LE) : C:\'Subprj\Subprj. prj

Focusis not in the SRC tab of project window.

%a : C\Wsp\ Sanpl e\ Debug\ Abs\ Sampl e. abs
%A . Sanpl e. abs

%D : C:\Wsp\ Sanpl e\ Debug\ Abs\

% PRIFI LE) . C\Wp\ Sanpl e\ Sanpl e. prj

[Example] Macro expansion in customize build
Release configuration of Subprj project is built.

% FI LE) : C:\'Subprj\LongNaneFile.c
9% FI LE[PATH]) : C\ Subprj

9% FI LE[RELPATH])

% FI LE[NAVE]) . LongNaneFil e

9% FI LE[EXT]) ©.C

9% FI LE[SHORTFULLNAME]) : C:\ Subprj\LongFi = ~1.c
9% FI LE[SHORTPATH]) : C:\ Subprj

9% FI LE[SHORTNAME]) : LongFi ~1

% PRIFI LE[RELPATH]) : ..\ Subprj

% PRIPATH) : C:\ Subprj

% OBJPATH) : C:\ Subprj\Rel ease\ Obj

% PRICONFI G . Rel ease

9% ENV[FETOOL]) : C:\ SOFTUNE

% TEMPFI LE) . C:\Subprj\Rel ease\ Opt\ _fs1056. TMP

[Example] M acr o expansion in tool options
Release configuration of Subprj project is built.

% FI LE) :

% PRIFI LE[RELPATH]) . ..\ Subprj

% PRIPATH) . C:\ Subprj

% OBJPATH) : C:\ Subprj\Rel ease\ bj
% PRICONFI G . Rel ease

% ENV[FETOOL]) . C\ SOFTUNE

20

CHAPTER 1 BASIC FUNCTIONS

1.12 Setting Operating Environment

This section describes the functions for setting the SOFTUNE Workbench operating

environment.

B Operating Environment
Set the environment variables for SOFTUNE Workbench and some basic setting for the Project.

To set the operating environment, use the [Setup]-[Setup Development Environment] menu.

@® Environment Variables

Environment variables are variables that are referred to mainly using the language tools activated from
SOFTUNE Workbench. The semantics of an environment variable are displayed in the lower part of the
Setup dialog. However, the semantics are not displayed for environment variables used by tools added later
to SOFTUNE Workbench.

When SOFTUNE Workbench and the language tools are installed in a same directory, it is not especially
necessary to change the environment variable setups.

@ Basic setups for Project

The following setups are possible.

Open the previously worked-on Project at start up

When starting SOFTUNE Workbench, it automatically opens the last worked-on Project.

Display options while compiling/assembling

Compile options or assemble options can be viewed in the Output window.

Save dialog befor e closing Proj ect

Before closing the Project, a dialog asking for confirmation of whether or not to save the Project to the
file is displayed. If this setting is not made, SOFTUNE Workbench automatically saves the Project
without any confirmation message.

Save dialog before compiling/assembling

Before compiling/assembling, a dialog asking for confirmation of whether or not to save a source file
that has not been saved is displayed. If this setting is not made, the file is saved automatically before
compile/assemble/make/build.

Termination messageis highlighted at Make/Build

At Compile, Assemble, Make, or Build, the display color of termination messages (Abort, No Error,
Warning, Error, Fatal error, or Failing During start) can be changed freely by the user.

B Reference Section
Development Environment

Note:

Because the environment variables set here are language tools for the SOFTUNE Workbench, the
environment variables set on previous versions of SOFTUNE cannot be used. In particular, add the
set values of [User Include Directory] and [Library Search Directory] to [Tool Options Settings].

21

CHAPTER 1 BASIC FUNCTIONS

1.13 Debugger Types

This section describes the types of SOFTUNE Workbench debuggers.

B Type of Debugger
SOFTUNE Workbench integrates three types of debugger: a smulator debugger, emulator debugger, and
monitor debugger. Any one can be selected depending on the requirement.

B Simulator Debugger

The simulator debugger simulates the MCU operations (executing instructions, memory space, 1/O ports,
interrupts, reset, etc.) with software to evaluate a program.

It isused for evaluating an uncompleted system and operation of individual units, etc.

B Emulator Debugger

The emulator debugger is software to evaluate a program by controlling an emulator from a host through a
communications line (RS-232C, LAN, USB).

Before using this debugger, the emulator must be initialized.

B Monitor Debugger

The monitor debugger evaluates a program by putting it into an evaluation system and by communicating
with a host. An RS-232C interface and an area for the debug program are required within the evaluation
system.

22

CHAPTER 1 BASIC FUNCTIONS

1.14 Memory Operation Functions

This section describes the memory operation functions.

B Functions for Memory Operations

Display/M odify memory data

Memory data can be display in the Memory window and modified.

Fill

The specified memory area can be filled with the specified data.

Copy

The datain the specified memory area can be copied to another area.

Compare

The datain the specified source area can be compared with datain the destination area.

Search

Datain the specified memory area can be searched.

For further details of the above functions, refer to "3.11 Memory Window" in "SOFTUNE Workbench
Operation Manual".

Display/M odify C variables

The names of variablesin a C source file can be displayed in the Watch window and modified.

Setting Watch point

By setting awatch point at a specific address, its data can be displayed in the Watch window.

For further details of the above functions, refer to "3.13 Watch Window" in "SOFTUNE Workbench
Operation Manual".

23

CHAPTER 1 BASIC FUNCTIONS

1.15 Register Operations

This section describes the register operations.

B Register Operations

The Register window is opened when the [View] - [Register] menu is executed. The register and flag values
can be displayed in the Register window.

For further details about modifying the register value and the flag value, refer to "4.4.4 Register" in
"SOFTUNE Workbench Operation Manual".

The name of the register and flag displayed in the Register window varies depending on each MCU in use.
For the list of register names and flag names for the MCU in use, refer to "Appendix A Register Name List"
of " SOFTUNE Workbench Operational Manual”.

B Reference Section
Register Window

24

CHAPTER 1 BASIC FUNCTIONS

1.16 Line Assembly and Disassembly

This section describes line assembly and disassembly.

B Line Assembly
To perform line-by-line assembly (line assembly), right-click anywhere in the Disassembly window to
display the short-cut menu, and select [Line Assembly]. For further details about assembly operation, refer to
"4.4.3 Assembly" in "SOFTUNE Workbench Operation Manual”.

B Disassembly

To display disassembly, use the [View]-[Disassembly] menu. By default, disassembly can be viewed starting
from the address pointed by the current program counter (PC). However, the address can be changed to any
desired address at start-up.

Disassembly for an address outside the memory map range cannot be displayed. If thisis attempted, "???" is
displayed as the mnemonic.

B Reference Section
Disassembly Window

25

CHAPTER 1 BASIC FUNCTIONS

1.17

Symbolic Debugging

The symbols defined in a source program can be used for command parameters
(address). There are three types of symbols as follows:

e Global Symbol

» Static Symbol within Module (Local Symbol within Module)

* Local Symbol within Function

B Types of Symbols
A symbol means the symbol defined while a program is created, and it usually has a type. Symbols become
usable by loading the debug information file.

Furthermore, atype of the symbol in C language is recognized and the command is executed.

There are three types of symbols as follows:

Global symbol

A global symbol can be referred to from anywhere within a program. In C language, variables and
functions defined outside a function without a static declaration are in this category. In assembler,
symbolswith a PUBLIC declaration are in this category.

Static symbol within module (L ocal symbol within module)
A static symbol within module can be referred to only within the module where the symbol is defined.

In C language, variables and functions defined outside a function with a static declaration are in this
category. In assembler, symbols without a PUBLIC declaration are in this category.

L ocal symbol within function

A local symbol within a function exists only in C language. A static symbol within a function and an
automatic variable are in this category.

- Static symbol within function
Out of the variables defined in function, those with static declaration.

- Automatic variable
Out of the variables defined in function, those without static declaration and parameters for the
function.

B Setting Symbol Information
Symbol information in the file is set with the symbol information table by loading a debug information file.
This symbol information is created for each module.

26

The module is constructed for each source file to be compiled in C language, in assembler for each source
file to be assembled.

The debugger automatically selects the symbol information for the module to which the PC belongs to at
abortion of execution (Called "the current module"). A program in C language aso has information about
which function the PC belongs to.

CHAPTER 1 BASIC FUNCTIONS

B Line Number Information

Line number information is set with the line number information table in SOFTUNE Workbench when a
debug information file is loaded. Once registered, such information can be used at anytime thereafter. Line
number is defined as follows:

[Source File Name] $Line Number

27

CHAPTER 1 BASIC FUNCTIONS

1.17.1

Referring to Local Symbols

This section describes referring to local symbols and Scope.

B Scope

When a local symboal is referred to, Scope is used to indicate the module and function to which the local
symbol to be referred belongs.

SOFTUNE Workbench automatically scopes the current module and function to refer to local symbolsin the
current module with preference. This is called the Auto-scope function, and the module and function
currently being scoped are called the Current Scope.

When specifying a local variable outside the Current Scope, the variable name should be specified by the
module and function to which the variable belongs. This method of specifying a variable is called a symbol
path name or a Search Scope.

B Moving Scope

As explained earlier, there are two ways to specify the reference to a variable: by adding a Search Scope
when specifying the variable name, and by moving the Current Scope to the function with the symbol to be
referred to. The Current Scope can be changed by displaying the Call Stack dialog and selecting the parent
function. For further details of this operation, refer to "4.6.7 Stack" in "SOFTUNE Workbench Operation
Manual". Changing the Current Scope as described above does not affect the value of the PC.

By moving the current scope in this way, you can search alocal symbol in parent function with precedence.

B Specifying Symbol and Search Procedure

28

A symbol is specified as follows:

[[Module Name] [\Function Name] \] Symbol Name

When a symboal is specified using the module and function names, the symbol is searched. However, when
only the symbol name is specified, the search is made as follows:

1. Local symbolsin function in Current Scope

2. Static symbolsin module in Current Scope

3. Global symbols
If aglobal symbol has the same name as alocal symbol in the Current Scope, specify "\" or "::" at the start of
global symbol. By doing so, you can explicitly show that is aglobal symbol.

An automatic variable can be referred to only when the variable is in memory. Otherwise, specifying an
automatic variable causes an error.

CHAPTER 1 BASIC FUNCTIONS

1.17.2 Referring to Variable of C Language

C language variables can be specified using the same descriptions as in the source
program written in C language.

B Specifying C Language Variables
C language variables can be specified using the same descriptions as in the source program. The address of C
language variables should be preceded by the ampersand symbol "&". Some examples are shown in the Table
1.17-1.

Table 1.17-1 Examples of Specifying Variables

Example of
Example of Variables Specifying Semantics
Variables
Regular Variable int data; data Value of data
Pointer char *p; *P Value pointed to by p
Array char g5]; a1 Vaue of second element of a
Structure struct stag { st.c Value of member c of st
char c; stp- >c Value of member c of the structure
int i to which stp points
¥
struct stag st;
struct stag *stp;
Union union utag { uni..i Value of member i of uni
char c;
int i;
} uni;
Address of variable | int data; &data Address of data
Reference type inti; ri Sameasi
int &ri= i

29

CHAPTER 1 BASIC FUNCTIONS

B Notes on C Language Symbols

30

The C compiler outputs symbol information with *_" prefixed to global symbols. For example, the symbol

main outputs symbol information _main. However, SOFTUNE Workbench permits access using the symbol
name described in the source to make the debug of program described by C language easier.

Consequently, a symbol name described in C language and a symbol name described in assembler, which
should both be unique, may be identical.

In such a case, the symbol name in the Current Scope normally is preferred. To refer to a symbol name
outside the Current Scope, specify the symbol with the module name.

If there are duplicated symbols outside the Current Scope, the symbol name searched first becomes valid. To
refer to another one, specify the symbol with the module name.

CHAPTER 2

DEPENDENCE FUNCTIONS

This chapter describes the functions dependent on each
Debugger.

2.1 Simulator Debugger

2.2 Emulator Debugger (MB2141)
2.3 Emulator Debugger (MB2147-01)
2.4 Emulator Debugger (MB2147-05)
2.5 Emulator Debugger (MB2198)
2.6 Emulator Debugger (MB2100-01)
2.7 Monitor Debugger

31

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1 Simulator Debugger

This section describes the functions of the simulator debugger for the F2MC-16 Family.

B Simulator Debugger

The simulator debugger simulates the MCU operations (executing instructions, memory space, 1/O ports,
interrupts, reset, etc.) with software to evaluate a program.

It is used to evaluate an uncompleted system, the operation of single units, etc.

There are 2 types of simulator debuggers.
- Normal simulator debugger (normal)
- High-speed simulator debugger (fast)

This high-speed simulator debugger provides substantial reductions in simulation time due to a dramatic
review of normal simulator debugger's processing methods.

The high-speed simulator debugger can be instruction processing performance for 10MIPS when it is
operated by PC equipped with Pentium4 2.0GHz.

External I/F for simulator are equipped to high-speed simulator debugger to create peripheral simulation
modules.

Please refer to "Appendix | External I/F DLL for Simulator” in "SOFTUNE Workbench Operation Manual".

B Operating Condition of High-speed Simulator Debugger

The high-speed simulator debugger requires much more RAM space on the host PC than that of normal
simulator debugger.

Therequired RAM size depends largely on your program size.
For the required available RAM space, see the table below:

Basic use Fs907s.exe (This product) 20MB
CODE size of target program per 64 KB 6MB
DATA size of target program per 64 KB 1.5MB

Insufficient RAM space will lead to an extreme decrease in simulation speed.
Target program size

CODE XX(KB)

DATA YY(KB)
Required RAM space (MB) = 20+ (XX /64) x 6+ (YY /64) x 1.5

However, RAM space larger than the above may be needed depending on program allocation.
Consecutive areas should be reserved as much as possible.

Example: Program with 1 MB of CODE and DATA sizes
Required RAM space (MB) = 20 + (1024 / 64) x 6 + (1024 / 64) x 1.5=140MB

32

CHAPTER 2 DEPENDENCE FUNCTIONS

B Simulation Range

The simulator debugger simulates the MCU operations (instruction operations, memory space, 1/O ports,
interrupts, reset, power-save consumption mode, etc.) Peripheral 1/Os, such as atimer, DMAC and serial /O,
other than the CPU core of the actual chip are not supported as peripheral resources. 1/0 space to which
periphera 1/0Os are connected is treated as memory space. There is a method for simulating interrupts like
timer interrupts, and data input to memory like 1/O ports. For details, see the sections concerning 1/0O port
simulation and interrupt simulation.

- Instruction simulation

- Memory simulation

- /O port simulation (Input port)

- 1/0 port simulation (Output port)
- Interrupt simulation

- Reset simulation

- Power-save consumption mode simulation

33

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.1 Setting Operating Environment

This section explains the operating environment setup.

B Setting Operating Environment

For the simulator debugger for FPMC-16FX, it is necessary to set the following operating environment. Its
predefined default settings are enabled at startup. Therefore, setup is not required when using the default
settings. Adjusted settings can be used as new default settings from the next time.

* Boot ROM file automatic execution

34

2.1.1.1

CHAPTER 2 DEPENDENCE FUNCTIONS

Boot ROM File Automatic Execution

The simulator debugger for FPMC-16FX automatically loads and executes the Boot ROM
file at the start of debugging.

Bl Boot ROM File Automatic Execution

When the simulator debugger for F°MC-16FX is specified, the Boot ROM file is automatically loaded and
then executed at the start of debugging. The Boot ROM file is stored in Lib\907\ABootROM under the
directory where Workbench isinstalled.

The directory containing the Boot ROM file can be displayed using the [Project] - [Setup Project] menu, and
can be modified in the setup project dialog. In addition, it is aso possible to automatically execute the Boot
ROM file during the debugger startup or reset of MCU. For details, see the "SOFTUNE Workbench
Operation Manual".

Notes:

When MCU reset is performed in the simulator debugger, the PC value varies, as shown below,
depending on whether it is FMC-16FX or not:

F2MC-16FX: Starting address of the Boot ROM file

Other than F2MC-16FX: Entry point in the target file (reset vector)

As the simulator debugger does not support fixed boot vectors, it always jumps to the reset vector
after the execution of the Boot ROM file. For the operation after the execution of the Boot ROM file,
see the LSI Specification Manual.

35

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.2 Instruction Simulation

This section describes the instruction simulation executed by SOFTUNE Workbench.

M Instruction Simulation

This simulates the operations of all instructions supported by the F2MC-16/16L/16LX/16H/16F. It also
simulates the changes in memory and register values due to such instructions.

36

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.3 Memory Simulation

This section describes the memory simulation executed by SOFTUNE Workbench.

B Memory Simulation
The simulator debugger must first secure memory space to simulate instructions because it simulates the
memory space secured in the host PC memory.
The following operation is required.
- To secure the memory area, either use the [Setup] - [Memory Map] menu, or the SET MAP command
in the Command window.
- Load the file output by the Linkage Editor (Load Module File) using either the [Debug] - [Load target
file] menu, or the LOAD/OBJECT command in the Command window.
B Simulation Memory Space
Memory space access attributes can be specified byte-by-byte using the [Setup] - [Memory Map] menu. The
access attribute of unspecified memory space is Undefined using the [Setup] - [Memory Map] menu.
B Memory Area Access Attributes

Access attributes for memory area can be specified as shown in Table 2.1-1. A guarded access break occurs if
access is attempted against such access attribute while executing a program. When access is made by a
program command, such access is alowed regardless of the attribute, CODE, READ or WRITE. However,

access to memory in an undefined area causes an error.

Table 2.1-1 Types of Access Attributes

Attribute Semantics
CODE Instruction operation enabled
READ Dataread enabled
WRITE Data write enabled
undefined Attribute undefined (access prohibited)

37

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.4 I/O Port Simulation

This section describes 1/0 port simulation executed by SOFTUNE Workbench.

B 1/O Port Simulation (Input Port)
There are two types of simulations in I/O port simulation: input port simulation, and output port simulation.
Input port simulation has the following types:
- Whenever a program reads the specified port, dataisinput from the pre-defined data input source.
- Whenever the instruction execution cycle count exceeds the specified cycle count, data is input to the
port.
To set an input port, use the [Setup] - [Debug Environment] - [I/O Port] menu, or the SET INPORT
command in the Command window.

Up to 4096 port addresses can be specified for the input port. The data input source can be a file or a
terminal. After reading the last data from the file, the data is read again from the beginning of the file. If a
terminal is specified, the input terminal is displayed at read access to the set port.

A text file created by an ordinary text editor, or a binary file containing direct code can be used as the data
input file. When using a text file, input the input data inside commas (,). When using a binary file, select the
binary radio button in the input port dialog.

B 1/O Port Simulation (Output Port)
At output port simulation, whenever a program writes data to the specified port, writing is executed to the
data output destination.
To set an output port, either use the [Setup] - [Debug Environment] - [I/O Port] menu, or the SET OUTPORT
command in the Command window.
Up to 4096 port addresses can be set as output ports. Select either a file or terminal (Output Terminal
window) as the data output destination.
A destination file must be either a text file that can be referred to by regular editors, or a binary file. To
output a binary file, select the Binary radio button in the Output Port dialog.

Note:
The following method is not supported by high-speed simulator debugger.

« Whenever the instruction execution cycle count exceeds the specified cycle count, data is input to
the port.

Furthermore the setting of memory map is necessary to set I/O port. When deleting memory map, 1/0
port is also deleted.

38

2.1.5

CHAPTER 2 DEPENDENCE FUNCTIONS

Interrupt Simulation

This section describes the interrupt simulation executed by SOFTUNE Workbench.

B Interrupt Simulation

Simulate the operation of the MCU (including intelligent I/O service') in response to an interrupt request.
Note that intelligent 1/O service does not support any end request from the resource.

Provisions for the causes of interrupts and interrupt control registers are made by referencing data in the
instal fileread at simulator start up.

*: Automatic data transfer function between I/O and memory is caled an intelligent 1/0 service. This
function alows exchange of data between memory and 1/O, which was done previously by the interrupt
handling program, using DMA (Direct Memory Access). (For details, refer to the user manua for each
model.)

The methods of generating interrupts are as follows:

- Execute instructions for the specified number of cycles while the program is running (during execution
of executable commands) to generate interrupts corresponding to the specified interrupt numbers and
cancel the interrupt generating conditions.

- Continue to generate interrupts each time the number of instruction execution cycles exceeds the
specified number of cycles.

The method of generating interrupts is set by the [Setup]-[Debug environment]-[Interrupt] menu. If interrupts
are masked by the interrupt enable flag when the interrupt generating conditions are established, the
interrupts are generated after they are unmasked.

MCU operation in response to an interrupt request is also supported for the following exception handling:
- Execution of undefined instructions
- Address error in program access
(Program access to internal RAM areaand internal 1/0 area)

- Stack areaerror (only for FPMC-16F)

Note:

When an external interrupt is generated while under an interrupt mask at high-speed simulator
debugger, that interrupt factor is eliminated.

39

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.6 Reset Simulation

This section describes the reset simulation executed by SOFTUNE Workbench.

Bl Reset Simulation

The simulator debugger simulates the operation when areset signa is input to the MCU using the [Debug]-
[Reset MCU] menu and initializes the registers. The function for performing reset processing by operation of
MCU instructions (writing to RST bit in standby control register) is aso supported. In this case, the reset
message (Reset) is displayed on the status bar.

40

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.7 Low-Power Consumption Mode Simulation

This section describes the low-power consumption SOFTUNE Workbench mode
simulation executed by SOFTUNE Workbench.

B Low-Power Consumption Mode Simulation
The MCU enters the low-power consumption mode in accordance with the MCU instruction operation (Write
to SLEEP bit or STOP hit of standby control register). Once in the sleep mode or stop mode, a message
("deep" for sleep mode, "stop" for stop mode) is displayed on the Status Bar. The loop keeps running until
either an interrupt request is generated, or the [Debug] - [Abort] menu is executed. Each cycle of the loop
increments the count by 1. During this period, 1/O port processing can be operated. Writing to the standby
control register using acommand is not prohibited.

41

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.8 STUB Function

This section describes the STUB function which executes commands automatically when
the breakpoint hit occurs.

B STUB Function

The STUB function is supported so that a series of commands in the command list can automatically be
executed when a specified breakpoint is hit. The use of this function enables spot processing, such as simple
I/0 simulation, external interrupt generation, and memory reprogramming, without changing the main
program. Thisfunction is effective only when the simulator debugger is used.

execution starts

Break (STUB) processing

Is there a command list
in breakpoint?

Yes

uonnoaxs weibold

Breakpoint is hit

Execution restarts

Process a command list in
breakpoint (execute commands).

Re-execute (is NOBREAK
specified)?

A4 "

Execution stops
execution ends e e

Yes

B Setting Method
The STUB function can be set by the following commands.
« Diaog
1. Breakpoint Set Dialog - [Code] tab
2. Breakpoint Set Dialog - [Datd] tab
e Command
1. SET BREAK
2. SET DATABREAK

42

2.1.9 Break

CHAPTER 2 DEPENDENCE FUNCTIONS

In the simulator debugger, five types of break functions can be used. When the program
execution is aborted by each break function, the address and the break factor to do the
break are displayed.

B Break Functions
In this simulator debugger, the following five types of break functions are supported.

Code break

Data break
Trace-buffer-full break
Guarded break

Forced break

43

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.9.1

Code Break

It is a function that the simulator debugger aborts the program execution when the code
access specified while executing the program is done.

B Flow of Code Break

When the program reaches the breakpoint (Immediately before an instruction memory positiona is
executed), the simulator debugger does the following processing.

1) The execution of the program is aborted (Before executing the instruction).

2) When the attainment frequency is checked, and it doesn't reach the attainment frequency of the specified
breakpoint, the program execution is restarted. It moves to 3) when it reaches the attainment frequency.

3) The memory position in which execution was aborted is displayed in the status bar.

The breakpoint can be set up to 65535 points or less.
When a break occurs due to a code break, the following message is displayed on the Status Bar.
Break at Address by breakpoint

B Setting Method

The code break is controlled by the following method.

* Command
- SET BREAK
Refer to "3.1 SET BREAK (type 1)" in "SOFTUNE Workbench Command Reference Manual".
« Diaog
- Breakpoint Set Dialog [Code] tab
Refer to "4.6.4 Breakpoint" in "SOFTUNE Workbench Operation Manual”.
¢ Window
- Source window/Disassembly window

Bl Notes on Code Break

44

There are several pointsto note in using code break. First, some points affecting code break are explained.

@ |Invalid Breakpoints

« No break occurs when a breakpoint is set at the instruction immediately after the following instructions.

F2MC-16/16L/16LX/16H: « PCB +DTB «NCC + ADB +SPB «CNR
* MOV ILM#imm8 «AND CCR#mm8
* OR CCR#imm8 * POPW PS

F°MC-16F: *PCB «DTB *NCC «ADB +SPB +CNR
* No break occurs when breakpoint set at address other than starting address of instruction.

Here are some additional points about the effects on other commands.

CHAPTER 2 DEPENDENCE FUNCTIONS

® Dangerous BreakPoints

* Never set abreakpoint at an address other than the instruction starting address.

« If abreakpoint is the last 1 byte of an instruction longer than 2 bytes length, and if such an address is
even, the following abnormal operation will result:

- If instruction executed by STEP command, instruction execution not aborted.

- If breakpoint specified with GO command, set at instruction immediately after such instruction, the
breakpoint does not break.

Note:
[High-speed version simulator debugger]

* When the break function is used, it is necessary to set the memory map beforehand. When the
memory map is deleted, the setting of the breakpoint is deleted.

« When the breakpoint with pass count is set to the reset vector in 16FX, hit count is cleared after the
Boot ROM file is executed. For details of the execution of the Boot ROM file, refer to "B Setting
Options in [Boot ROM] (Only MB2198)" of section "4.5.5.9 Setting Debug Options" in "SOFTUNE
Workbench Operation Manual”.

45

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.9.2 Data Break

It is a function that the simulator debugger aborts the program execution when the data
access (read and write) specified while executing the program is done.

B Flow of Data Break
The simulator debugger does the following processing when the program writes in the breakpoint or it reads
it.
1) After the execution of theinstruction is completed, the execution of the program is aborted.

2) It moves to 3) when the program execution is restarted when the access frequency is checked, and it
doesn't reach the access frequency of the specified data break, and it reaches the access frequency.

3) When it reaches the access frequency and the program execution is aborted, the memory position of the
instruction in which it is writing (Or, read it) is displayed to the memory position of the data breakpoint
and the memory position in the status bar.

4) Next, the executed memory position is displayed.

The breakpoint can be set up to 65535 points or less.
When a break occurs due to a data break, the following message is displayed on the Status Bar.
Break at Address by databreak at Access address
B Setting Method
The data break is controlled by the following method.

e Command
- SET DATABREAK
Refer to "3.10 SET DATABREAK (type 2)" in "SOFTUNE Workbench Command Reference
Manual".
« Diaog
- Breakpoint Set Dialog [Data] tab
Refer to "4.6.4 Breakpoint" in "SOFTUNE Workbench Operation Manua".

Note:
[High-speed version simulator debugger]
* When the break function is used, it is necessary to set the memory map beforehand. When the
memory map is deleted, the setting of the breakpoint is deleted.

« When the breakpoint with pass count is set to the reset vector in 16FX, hit count is cleared after the
Boot ROM file is executed. For details of the execution of the Boot ROM file, refer to "M Setting
Options in [Boot ROM] (Only MB2198)" of section "4.5.5.9 Setting Debug Options" in "SOFTUNE
Workbench Operation Manual”.

46

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.9.3 Trace-Buffer-Full Break

It is a function to abort the program execution when the trace buffer becomes full.

B Trace-Buffer-Full Break

It isafunction to abort the program execution when the trace buffer becomes full.

When a break occurs due to atrace-buffer-full break, the following message is displayed on the Status Bar.

Break at Address by trace buffer full
B Setting Method
The trace-buffer-full break is controlled by the following method.
e Command
- SET TRACE/BREAK
Refer to "4.29 SET TRACE(type 1)" in "SOFTUNE Workbench Command Reference Manual”.
- Diaog
- Trace Set Dialog
Refer to "4.4.8 Trace" in "SOFTUNE Workbench Operation Manual".

47

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.9.4 Guarded Access Break

It is a function to abort the program execution when the violation to the access attribute,
doing the access, and guarded (An undefined area cannot be accessed) area are
accessed.

B Guarded Access Break
It is a function to abort the program execution when the violation to the access attribute, doing the access,
and guarded (An undefined area cannot be accessed) area are accessed.
Guarded access break functions as follows.
e Code guarded
When the instruction execution to the area without the code attribute
* Read guarded
When read the area without the read attribute
« Write guarded
When writing it in the area without the write attribute
When a break occurs due to a guarded break, the following message is displayed on the Status Bar.

Break at Address by guarded access { code/read/write} at Access address

48

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.9.5 Forced Break

It is a function to abort the execution of the program compulsorily.

B Forced Break
It isafunction to abort the execution of the program compulsorily.
When a break occurs due to aforced break, the following message is displayed on the Status Bar.
Break at Address by command abort request

49

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.10 Measuring Execution Cycle Count

This function measures the program execution cycle count.

B Measurement ltems
M easures program execution cycle count and step counts.

@® Execution Cycle Count

Thisis calculated based on the basic cycle count of each instruction described in the Programming Manual.
A compensation value (a, b), which is described in the list of an instruction in Programming Manual, is

calculated as 1.

The maximum measurable value varies, as shown below, whether the normal or the high-speed simulator
debugger is used.

Normal debugger: Max. (2 to the power of 32 - 1) = 4,294,967,295 cycles

High-speed debugger: Max. (2 to the power of 64 - 1) = 18,446,744,073,709,551,615 cycles

® Execution Step Count

M easures program execution step counts.

For both the normal simulator debugger and the high-speed simulator debugger, the maximum measurable
count is"2 to the power of 32 - 1", in other words, up to 4,294,967,295 steps.

The measurement is performed whenever a program is executed, and the measurement result displays the
following two values:

« Step counts spent on the previous program execution
« Total step counts spent on the program execution since the previous clearing

B Displaying Measurement Results
Either of the following methods can be used to display the measurement resullts.
@ Display by dialog

The results appear in the time measurement dialog, which can be displayed by selecting [Debug] — [Time
M easurement] menu.

For details, refer to Section "4.6.8 Time Measurement” in " SOFTUNE Workbench Operation Manual”.

® Display by command

Enter the SHOW TIMER command in the command window.
For details, refer to Section "4.27 SHOW TIMER" in"SOFTUNE Workbench Command Reference Manua™.

50

CHAPTER 2 DEPENDENCE FUNCTIONS

B Clearing Measurement Results
Either of the following methods can be used to clear the measurement results.

@ Operation by dialog

Click the [Clear] button in the time measurement dialog, which can be displayed by selecting [Debug] —
[Time Measurement] menu.

For details, refer to Section "4.6.8 Time Measurement” in "SOFTUNE Workbench Operation Manual”.

® Clearing by command

Enter the CLEAR TIMER command in the command window.
For details, refer to Section "4.28 CLEAR TIMER" in "SOFTUNE Workbench Command Reference Manud”.

Note:
Because no simulation was done on pipeline process or cache operation inside the chip, it may differ
from an actual chip for normal simulator debugger and/or high-speed simulator debugger.

51

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.11

Trace

The address and status information can be sampled during program execution to record
it in a trace buffer. This function is called a trace.

W Trace

The address and status information can be sampled during program execution to record it in a trace buffer.
This function is called a trace. Data of the trace buffer can be used to make a detailed analysis of a program
execution history.

The trace buffer is in the form of aring. When it becomes full, it records the next data by automatically
overwriting the buffered data at the beginning.

B Trace Data

The simulator debugger can sample 1000 frames of trace data for the address of the executed instruction.

B Abortion of Trace Measurement

While the trace function is enabled, datais always sampled and recorded in the trace buffer during execution
of auser program.

The program execution aborts due to a break factor such as a breakpoint, terminating the trace.

Furthermore, when the trace buffer becomes full, a program break can be invoked. This break is called a
trace buffer full break.

B Frame Number

52

A number is assigned to each frame of sampled trace data. This number is called a frame number.
The frame number is used to specify the display start position of the trace buffer.

The number 0 is assigned to the last-sampled trace data. Negative values are assigned to trace data that have
been sampled before the arrival at the triggering position.

Figure 2.1-1 Frame Numbering at Tracing

0 (Trigger point)

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.11.1 Setting Trace

You must set the following two items to perform a trace. After that, trace data will be
sampled with the execution of the program.

B Setting Trace
1. Enablethe trace function. This program will startup and will be enabled.
« Didog
Thisisdone by [Setup] - [Trace] in the trace window shortcut menu.
e Command
Enter the ENABLE TRACE command.

2. Set the trace buffer full break. When the trace buffer is full, you can make a break. When starting up this
program, it is setup for no breaks.

« Diaog

Thisis done using the trace window shortcut menu [Setup] - [Trace].
e Command

Enter the SET TRACE/BREAK command.

53

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.11.2 Displaying Trace Data

Data recorded in the trace buffer can be displayed.

B Displaying Trace Data
The trace window or command window displays how much trace datais stored in the trace buffer.
* Tracewindow
Select [Refresh] in the trace window shortcut menu.
e Command window
Enter the SHOW TRACE command.
W Display Format of Trace Data
There are two display formats of the trace data.
 Instruction: The instruction operation is displayed in disassembly units.
» Source: This mode only displays source lines.
B Clearing Trace Data
Either of the following methods can be used to clear datain the trace buffer.
e Window
Select [Clear] in the trace window shortcut menu.
* Command
Enter the CLEAR TRACE command.

54

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.11.3 Searching Trace Data

The trace buffer can be searched to locate target data.

B Searching Trace Data
The trace buffer has 1000 frames, so the target data may not be found immediately. Therefore the trace data
can be searched from datain the trace buffer by specifying an address.
B How to Search Trace Data
Either of the following methods can be used to search the trace data.
e Window
Select [Find] in the trace window shortcut menu.
* Command
Enter the SEARCH TRACE command.

55

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.11.4 Saving Trace Data

This section explains how to save trace data.

B Saving Trace Data
Trace data can be saved in a specified file.

The following two methods are available to save trace data: using GUI (window or dialog) and using only the
command. The same result is obtained from both methods.

® Using GUI for Saving Trace Data

1. Display the trace window.
- Select [View] - [Trace] menu.
2. Specify the name of the file in which to save trace data.
- Right-click on the trace window, and select [Save] from the shortcut menu. The [Save as] dialog

appears.
Specify the file name and where to save trace data. For details, refer to Section "4.4.8 Trace" in

"SOFTUNE Workbench Operation Manual".

® Using Command for Saving Trace Data

1. Savetrace data.
- Execute the SHOW TRACE/FILE command.
For details, refer to Section "4.33 SHOW TRACE (type 3)" in "SOFTUNE Workbench Command
Reference Manual".
When additionally saving trace data in an existing file, execute the SHOW TRACE/FILE/APPEND
command.

56

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.12 Measuring Coverage

In the high-speed version simulator debugger, the CO coverage measurement function is
provided. Use this function to find what percentage of an entire program has been
executed.

B Coverage Measurement Function

When testing a program, the program is executed with various test data input and the results are checked for
correctness. When the test is finished, every part of the entire program should have been executed. If any part
has not been executed, there is a possibility that the test is insufficient.

It can know what percentage of the entire program executed when the coverage function for the high-speed
version simulator debugger to have is used.

In addition, details such as which addresses were not accessed can be checked.
In this debugger, the range to measure coverage can be set.
Please set the time base range only to the code area when you do the CO coverage.

Moreover, the access of the variable can be examined as the variable not used is searched out by setting the
time base range to the data area.

B Coverage Measurement Procedures
The procedure for coverage measurement is as follows:

» Set range for coverage measurement: SET COVERAGE
* Measuring coverage: GO, STEP, CALL
« Displaying measurement result: SHOW COVERAGE

B Coverage Measurement Operation
The following operation can be made in coverage measurement:
« Load/Save of coverage data: LOAD/COVERAGE. SAVE/COVERAGE
» Clearing coverage data: CLEAR COVERAGE
« Canceling coverage measurement range: CANCEL COVERAGE

57

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.12.1 Coverage Measurement Procedures

The procedure for coverage measurement is as follows:
» Set range for coverage measurement:SET COVERAGE
* Measure coverage:GO, STEP, CALL

» Display measurement result: SHOW COVERAGE

B Setting Range for Coverage Measurement
Use the SET COVERAGE command to set the measurement range. Up to 32 ranges can be specified.

By specifying /AUTOMATIC for the command qualifier, the code area for the loaded module is set
automatically. However, the library code areais not set when the C compiler library is linked.

[Example]
>SET COVERACE FF0000. . FFFFFF

B Measuring Coverage

When preparing for coverage measurement, execute the program.

Measurement starts when the program is executed by using the GO, STEP, or CALL command.
W Displaying Coverage Measurement Result

To display the coverage measurement result, use the SHOW COVERAGE command. The following can be

displayed:

» Display coveragerate of total measurement area

« Displaying coverage rate of load module

e Summary of 16 addresses as one block

« Detailsindicating access status of each address

» Displaying coverage measurement result per source line

« Displaying coverage measurement result per machine instruction

@ Displaying coverage rate of total measurement area (specify /TOTAL for the command qualifier)

>SHOW COVERAGE/ TOTAL
total coverage : 82.3%

@ Displaying coverage rate of load module (specify /MODULE for the command qualifier)

>SHOW COVERAGE/MODULE
sample.abs (84.03%)
+- startup.asm........... (90.43%)

+-samplecc (95.17%)
+-samp.C (100.00%)

Displays the load modules and the coverage rate of each module.

58

CHAPTER 2 DEPENDENCE FUNCTIONS

® Summary (Specify /IGENERAL for command qualifier)

>SHOW COVERAGE/ GENERAL
(HEX) 0X0 +1X0 +2X0
o o ommmee e
address 0123456789ABCDEF0123456789ABCDEF0123456 ... ABCDEF Q0(%

32.0

FF0000 **3* F\

Display the access status of every 16 addresses
: No access
1 to F : Display the number accessed in 16 addresses by the hexadecimal number.
* : Access all of the 16 addresses.

® Details (Specify /DETAIL for command qualifier)

Display one line of a
coverage rate

>SHOW COVERAGE/ DETAI L FF0000

address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F Q0(%

FFO000 - 100.0
FF0010 100.0
FF0020 18.6
FF0030 100.0
FF0040 93.7
FF0050 100.0
FF0060 0.0
FF0070 0.0
FF0080 0.0

Display the access status of every 1 address
: No access
- :Access

59

CHAPTER 2 DEPENDENCE FUNCTIONS

60

@ Displays per source line (specify /SOURCE for the command qualifier)

>SHOW COVERAGE/SOURCE main

* 70:{
71: int i
72: struct table *value[16];
73:

* 74 for (i=0; i<16; i++)

* 75: value[i] = &target][i];
76:

* 77 sort_val(value, 16L);

Displays execution status of each source line.
No executing
* - Executing

Blank : Line which the code had not been generated or is outside
the scope of the coverage measurement

@ Displays per machine instruction (specify /INSTRUCTION for the command qualifier)

>SHOW COVERAGE/INSTRUCTION F9028F
sample.c$70 {

* F9028F \main:

* F9028F 0822 LINK #22

* F90291 4F01 PUSHW RWO
sample.c$74 for (i=0; i<16; i++)

. F90293 DO MOVN A#0

. F90294 CBFE MOVW @RW3-02,A
. F90296 BBFE MOVW A,@RW3-02
. F90298 3B1000 CMPW A,#0010

. F9029B FB18 BGE F902B5
sample.c$75 valuel[i] = &target[i];

. F9029D BBFE MOVW A,@RW3-02
. F9029F 0C LSLW A

. F902A0 98 MOVW RWO,A

. F902A1 71F3DE MOVEA A @RW3-22
. F902A4 7700 ADDW RWO,A

. F902A6 4214 MOV A#l4

. F902A8 7833FE MULUW A @RW3-02

. 902AB 38A001 ADDW A#01A0

Displays execution status of each machine command line.
No executing
* Executing
Blank : Instruction outside the scope of the coverage measurement

CHAPTER 2 DEPENDENCE FUNCTIONS

2.1.13 Checking Debugger Information

This section explains how to check information about the simulator debugger.

B Debugger Information
This simulator debugger enables you to check the following information at startup.

* SOFTUNE Workbench file information
If any errors have been discovered during SOFTUNE Workbench operations, check this information and
contact our sales department or support department.

B How to Check
Use one of the following methods to check debugger information.

e Command
- SHOW SYSTEM
Refer to Section "1.19 SHOW SYSTEM" in "SOFTUNE Workbench Command Reference Manual".
« Diaog
- Version information dialog
Select [Help] - [Version Information] menu.

For details, refer to Section "4.9.3 Version Information" in "SOFTUNE Workbench Operation
Manual".

B Displayed Contents
F2MC-16 Fanily SOFTUNE Workbench VxxLxx
ALL RI GHTS RESERVED,
COPYRI GHT(C) FUJI TSU SEM CONDUCTCR LI M TED 1997
LI CENCED MATERI AL -
PROGRAM PROPERTY OF FUJI TSU SEM CONDUCTCR LI M TED

Cpu information file path: CPU information file path
Cpu information file version: CPU information file version

Si Cm

Product name: SOFTUNE Wor kbench
File Path: SiC907.dll path
Version: SiC907.dll version

Sii Ed

File Path: SiiEd3.ocx path
Version: SiiEd3.ocx version

Si MBO7

Product name: SOFTUNE Wor kbench
File Path: SiMO07.dll path
Version: SiMB0O7.dll version

61

CHAPTER 2 DEPENDENCE FUNCTIONS

62

Language Tool s

- F2MC-16 Fanmily SOFTUNE C Conpil er version
File Path: fcc907s. exe path

- F2MC-16 Fami |y SOFTUNE Assenbl er version
File Path: fasnmb07s.exe path

- F2MC-16 Family SOFTUNE Li nker version
File Path: flnk907s.exe path

- F2MC-16 Fami |y SOFTUNE Li brarian version
File Path: flib907s.exe path

- SOFTUNE FJ-OVF to S-FORVAT Converter version
File Path: f2ms.exe path

- SOFTUNE FJ- OVF to | NTEL- HEX Converter version
File Path: f2is.exe path

- SOFTUNE FJ- OVF to | NTEL- EXT- HEX Converter version
File Path: f2es.exe path

- SOFTUNE FJ-OWF to HEX Converter version
File Path: f2hs.exe path

Si GsM

Product name: Softune Workbench
File Path: SiGsWB07.dl |l path
Version: Si GMBO7.dll version

F2MC- 16 Series Debugger DLL
Product nane: SOFTUNE Wor kbench
File Path: SiD907.dll path
Version: SiDI907.dll version

Debugger type : Current debbuger type

MCU type : Currently selected target MCU

VCpu dl I name : Path and name of the currently used VCpu dl|

VCpu dll version : Version of the currently used virtual debugger DLL
REALQCS ver si on . REALCS version

Si | ODef

Product name: Softune Wbr kbench
File Path: SilODef.dll path
Version: SilODef.dll version

Current path: Path of the currently used project
Language: Currently used | anguage
Help file path: Help file path

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2 Emulator Debugger (MB2141)

This section explains the functions of the emulator debuggers for the MB2141.

B Emulator Debugger

When choosing the emulator debugger from the setup wizard, select one of the following emulators. The
following description explains the case when MB2141 has been selected.

MB2141
MB2147-01
MB2147-05
MB2198

The emulator debugger for the MB2141 is software that controls an emulator from a host computer via a
communications line (RS-232C or LAN) to evaluate programs.

The following series can be debugged:
When MB2141-506 pod used
F°MC-16/16H
F°MC-16F
F°MC-16L
F°MC-16LX
When MB2141-507 pod used
F°MC-16F
F°MC-16L
F°MC-16LX
Before using the emulator, the emulator must be initialized.

For further details, refer to "Appendix B Download Monitor Program", and "Appendix C Setting up LAN
Interface” in "SOFTUNE Workbench Operation Manual".

63

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.1 Setting Operating Environment

This section explains the operating environment setup.

B Setting Operating Environment

For the emulator debugger for the MB2141, it is necessary to set the following operating environment.
Predefined default settings for all these setup items are enabled at startup. Therefore, setup is not required
when using the default settings. Adjusted settings can be used as new default settings from the next time.

- MCU operation mode
- Debug area
- Memory mapping

- Timer minimum measurement unit

64

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.1.1 MCU Operation Mode

There are two MCU operation modes as follows:
* Debugging Mode
* Native Mode

B Setting MCU Operation Mode
Set the MCU operation mode.

There are two operation modes: the debugging mode, and the native mode. Choose either one using the SET
RUNMODE command.

At emulator start-up, the MCU isin the debugging mode.

When the MCU operation mode is changed, all the following are initialized:
Data breakpoints

Event condition settings

- Sequencer settings
Trace measurement settings and trace buffer

Performance measurement settings and measured result

® Debugging Mode
All the operations of evaluation chips can be analyzed, but their operating speed is slower than that of mass-
produced chips.

® Native Mode

Evaluation chips have the same timing as mass-produced chips to control the operating speed. Note that the
restrictions the shown in Table 2.2-1 are imposed on the debug functions.

Table 2.2-1 Restrictions on Debug Functions in Native Mode

Applicable series Restrictions on debug functions

F2MC-16/16H - Memory mapping setting is disabled and each areais accessed to the MCU
specifications.
- Traces cannot be disassembled.

Common to all series - When adata read access occurs on the MCU internal bus, theinternal bus
access information is not sampled and stored in the trace buffer.

- BEvenwhen adata break or event (data access condition) is set for data on the
MCU interna bus, it may not become a break factor or sequencer-triggering
factor.

- The coverage function may fail to detect an access to data on the MCU
internal bus.

65

CHAPTER 2 DEPENDENCE FUNCTIONS

B MCU Operation Speed

To support a broader range of MCU operation speeds, the emulator adjusts control of the MCU according to
the MCU operation speed.

Normally, set the low-speed operation mode. If the F°MC-16H/16F series is operated at high speed and
malfunctions occur, change the setting to the high-speed operation mode.

Also, to start at low speed and then change to high speed because of the gear setting, etc., use the SET
RUNMODE command to change the setting.

66

2.2.1.2

CHAPTER 2 DEPENDENCE FUNCTIONS

Debug Area

Set the intensive debugging area out of the whole memory space. The area functions are

enhanced.

B Setting Debug Area

There are two debug areas: DEBUGL, and DEBUG2. A continuous 512KB area (8 banks) is set for each
area.

Set the debug area using the SET DEBUG command.
Setting the debug area enhances the breakpoints/data breakpoints and the coverage measurement function.

- Enhancement of Breakpoints

Up to six breakpoints (not including temporary breakpoints set using GO command) can be set when the
debug area has not been set yet.
When setting the debug area as the CODE attribute, up to 65535 breakpoints can be set if they are within

the area. At thistime, up to six breakpoints can be set for an area other than the debug area, but the total
count of breakpoints must not exceed 65535.

- Enhancement of Data Breakpoints

Up to six data breakpoints can be set when the debug area has not been set yet.

When setting the debug area of the data attribute (READ, WRITE), up to 65535 data breakpoints can be
set if they are within the area and have the same attribute. At this time, up to six data breakpoints can be
set for an area other than the area or for a different attribute, but the total number of data breakpoints must
not exceed 65535.

- Enhancement of Coverage M easurement Function

Setting the debug area enables the coverage measurement function. In coverage measurement, the
measurement range can be specified only within the area specified as the debug area.

The attributes for the debug area are "Don't care" as long as it is being used for coverage measurement.
The coverage measurement attribute can be set, regardless of the debug area attributes.

67

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.1.3

Memory Area Types

A unit in which memory is allocated is called an area. There are seven different area

types.

B Memory Area Types

A unit to allocate memory is alocated is called an area. There are seven different area types as follows:

- User Memory Area

Memory space in the user system is called the user memory area and this memory is called the user
memory. Up to eight user memory areas can be set with no limit on the size of each area.

Access attributes can be set for each area; for example, CODE, READ, etc., can be set for ROM area, and
READ, WRITE, etc. can be set for RAM area. If the MCU attempts access in violation of these attributes,
the MCU operation is suspended and an error is displayed (guarded access break).

To set the user memory area, use the SET MAP command. The F2MC-16/16H only alows this setup in
the debugging mode.

- Emulation Memory Area

Memory space substituted for emulator memory is called the emulation memory area, and this memory is
called emulation memory.

As emulation memory area, Using MB2145-506 emulation pod, up to seven areas (including mirror area
and internal ROM area described below) each with a maximum size of 64 KB can be set. An area larger
than 64 KB can be set, but the areas are managed internally in 64 KB units.

Using MB2145-507 emulation pod, up to seven areas (including mirror area and internad ROM area
described below) each with a maximum size of 512 KB can be set.

The memory operation command can be executed for this area while executing MCU.

To set the emulation memory area, use the SET MAP command. Attributes are set as for user memory
area.

Note:

Even if the MCU internal resources are set as emulation memory area, access is made to the internal
resources. The FZMC-16/16H only allows this setup in the debugging mode.

68

- Mirror Area

The mirror area is a region in the emulator memory that makes copies of user memory accesses. The
memory in this areais called amirror region.

The mirror areais used while it overlaps with a user memory area or undefined area. It is implemented by
the emulation memory. Up to five mirror areas can be defined including emulation memory areas.

Mirror areas are used to reference the user memory during on-the-fly execution (For further details, refer
to Section "2.2.4 On-the-fly Memory Access").

Mirror areas can be set using the SET MAP command. If the memory contents copy option is selected
when amirror areais set, the contents of the mirror area are always the same contents as the user memory.

CHAPTER 2 DEPENDENCE FUNCTIONS

Note:
When the F?MC-16/16H is used, mirror area setup can be performed only in the debugging mode.
- Internal ROM Area
The area where the emulator internal memory is substituted for internal ROM is called the internal ROM
area, and this memory is called the internal ROM memory.
Only oneinternal ROM area with a size up to 128 KB can be specified. The internal ROM area is capable
to set by the "Setup Map" dialog opening by "Debugger Memory Map... " from "Setup".
Note:
The internal memory area, it is set a suitable area automatically by the selected MCU.
- Internal ROM Image Area (FZM C-16L, F2M C-16L X, F2M C-16F only)
Some types of MCUs have data in a specific area of internal ROM appearing to 00 bank. This specific
areais called the internal ROM image area.
Theinternal ROM image area is capable to set by the "Setup Map" dialog opening by "Debugger Memory
Map... " from "Setup". This area attribute is automatically set to READ/CODE. The same data as in the
internal ROM area appears in the internal ROM image area.
Note that the debug information is only enabled for either one (one specified when linked). To debug only
the internal ROM image area, change the creation type of the load modulefile.
Note:
The internal memory area, it is set a suitable area automatically by the selected MCU.
- Internal Instruction RAM Area (F2M C-16H only)
Some types of MCUs have the interna instruction RAM, and this area is called the internal instruction
RAM area
The internal instruction RAM areg, it is capable to set by the "Internal Instruction RAM ared" tab in the
"Setup CPU Information" dialog (select menu "project”-"setup project...", select the "MCU" tab, and push
the "CPU Information..." button). The size must be specified to either H'100, H'200, H'400, H'800,
H'1000, H'2000 or H'4000 bytes.
Note:

The internal memory area, it is set a suitable area automatically by the selected MCU.

- Undefined Area
A memory area that does not belong to any of the areas described above is part of the user memory area.
Thisareais specifically called the undefined area.

The undefined area can be set to either NOGUARD area, which can be accessed freely, or GUARD area,
which cannot be accessed. Select either setup for the whole undefined area. If the area attribute is set to
GUARD, aguarded access error occurs if accessto thisareais attempted.

69

CHAPTER 2 DEPENDENCE FUNCTIONS

Note:
The F?MC-16/16H only allows this setup in the debugging mode.

70

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.1.4 Memory Mapping

Memory space can be allocated to the user memory, the emulation memory, etc., and the
attributes of these areas can be specified.

However, the MCU internal resources are not dependent on this mapping setup and
access is always made to the internal resources.

B Access Attributes for Memory Areas
The access attributes shown in Table 2.2-2 can be specified for memory areas.

A guarded memory access break occurs if access is attempted in violation of these attributes while executing
aprogram.

When access to the user memory area and the emulation memory area is made using program commands,
such access is allowed regardless of the CODE, READ, WRITE attributes. However, access to memory with
the GUARD attribute in the undefined area, causes an error.

Table 2.2-2 Types of Access Attributes

Area Attribute Description
User Memory CODE Instruction Execution Enabled
Emulation Memory
READ Data Read Enabled
WRITE Data Write Enabled
Undefined GUARD Access Disabled

NOGUARD No check of access attribute

When access is made to an area without the WRITE attribute by executing a program, a guarded access break
occurs after the data has been rewritten if the access target is the user memory. However, if the access target
is the emulation memory, the break occurs before rewriting. In other words, write-protection (memory data
cannot be overwritten by writing) can be set for the emulation memory area by not specifying the WRITE
attribute for the area.

This write-protection is only enabled for access made by executing a program, and is not applicable to access
by commands.

B Creating and Viewing Memory Map
Use the following commands for memory mapping.

SET MAP: Set memory map.
SHOW MAP: Display memory map.
CANCEL MAP: Change memory map setting to undefined.

71

CHAPTER 2 DEPENDENCE FUNCTIONS

[Example]
>SHOW VAP
addr ess attribute type
000000 .. FFFFFF noguar d
The rest of setting area nunbers
user = 8 enul ation =5

>SET MAP/ USER H 0. .H 1FF

>SET MAP/ READ/ CODE/ EMULATI ON H FF0000. . H FFFFFF
>SET MAP/ USER H 8000. . H 8FFF

>SET MAP/ M RROR/ COPY H 8000. . H 8FFF

>SET MAP/ GUARD

>SHOW VAP

addr ess attribute type
000000 .. OOO1FF read wite user
000200 .. OO7FFF guard

008000 .. OO8FFF read wite user
009000 .. FEFFFF guard

FFO000 .. FFFFFF read wite code enul ati on
mrror address area
008000 .. OO8FFF copy
The rest of setting area nunbers

user = 6 enulation = 3

>

B Internal ROM Area Setting

The [Setup Map] dialog box is displayed using [Environment] - [Debugger Memory Map] menu. Y ou can set
the internal ROM area using the [Internal ROM Ared] tab after the [Map Adding] dialog box is displayed by
clicking on the [Setting] button. Two areas can be set. Both ones require empty Emulation area to be set.
Require empty areais shown below.

(Empty space of the emulation area) x (one area size)
Y ou can specify the size up to the size shown above.

Specify the internal ROM area from the ending address H'FFFFFF (fixed) for area 1. Also, it is possible to
delete the internal ROM area.

72

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.1.5 Timer Minimum Measurement Unit

The timer minimum measurement unit affects the sequencer, the emulation timer and the
performance measurement timer.

B Setting Timer Minimum Measurement Unit
Choose either 1 us or 100 ns as the timer minimum measurement unit for the emulator for measuring time.
The minimum measurement unit for the following timersis changed depending on this setup.
e Timer values of sequencer (timer conditions at each level)
* Emulation timer
» Performance measurement timer
Table 2.2-3 shows the maximum measurement time length of each timer when 1 ps or 100 ns is selected as
the minimum measurement unit.
When the minimum measurement unit is changed, the measurement values of each timer are cleared as well.
The default setting is 1 us.

Table 2.2-3 Maximum Measurement Time Length of Each Timer

1 us selected 100 ns selected
Sequencer timer About 16 seconds About 1.6 seconds
Emulation timer About 70 minutes About 7 minutes
Performance measurement timer About 70 minutes About 7 minutes

Use the following commands to control timers.
SET TIMERSCALE : Sets minimum measurement unit for timers
SHOW TIMERSCALE : Displays status of minimum measurement unit setting for timers
[Examplé]
>SET TI MERSCALE/ 100N
>SHOW Tl MERSCALE

Timer scale : 100ns
>

73

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.2 Notes on Commands for Executing Program

When using commands to execute a program, there are several points to note.

Bl Notes on GO Command

For the GO command, two breakpoints that are valid only while executing commands can be set. However, it
isrequired to be careful in setting these breakpoints.

- Invalid Breakpoints
No break occurs when a breakpoint is set at the instruction immediately after the following instructions.

PCB DTB
NCC ADB
F2MC-16L/16L X/16/16H SPB CNR
MOV ILM #mms8 AND CCR,#mm8
OR CCR#mm8 POPW PS
PCB DTB
F2MC-16F NCC ADB
SPB CNR

- No break occurs when breakpoint set at address other than starting address of instruction.
- No break occurs when both following conditions met at one time.
- Instruction for which breakpoint set starts from odd-address,

- Preceding instruction longer than 2 bytes length, and breakpoint already set at last 1-byte address of
preceding instruction (This "already-set" breakpoint is an invalid breakpoint that won't break, because
it has been set at an address other than the starting address of an instruction).

74

- Abnormal Breakpoint

CHAPTER 2 DEPENDENCE FUNCTIONS

Setting a breakpoint at the instruction immediately after string instructions listed below, may cause a

break in the middle of the string instruction without executing the instruction to the end.

MOVS MOV SW
SECQ SECQW
WBTS MOVS
MOV SWI SECQI
F2MC-16L/16LX/16/16H SECQWI WBTC
MOVSD MOVSWD
SECQD SECQWD
FILS FILSI
FILSW FILSWI
MOVS MOV SW
SECQ SECQW
WBTS MOVS
MOV SWI SECQI
2 C16E SECQWI WBTC
MOVSD MOVSWD
SECQD SECQWD
FILS FILSI
FILSW FILSWI
MOVM MOVMW

B Notes on STEP Command
- Exceptional Step Execution

When executing the instructions listed in the notes on the GO command as invalid breakpoints and
abnormal breakpoints, such instructions and the next instruction are executed as a single instruction.
Furthermore, if such instructions are continuous, then all these continuous instructions and the next
instruction are executed as a single instruction.

- Step Execution that won't Break

Note that no break occurs after step operation when both the following conditions are met at one time.
- When step instruction longer than 2 bytes and last code ends at even address

- When breakpoint already set at last address (This "already-set" breakpoint is an invalid breakpoint that
won't break, because it has been set at an address other than the starting address of an instruction.)

B Controlling Watchdog Timer

It is possible to select "No reset generated by watchdog timer counter overflow" while executing a program
using the GO, STEP, CALL commands.

Use the ENABLE WATCHDOG, DISABLE WATCHDOG commands to control the watchdog timer.
- ENABLE WATCHDOG
- DISABLE WATCHDOG

The start-up default in this program is "Reset generated by watchdog timer counter overflow".

Reset generated by watchdog timer counter overflow
No reset generated by watchdog timer counter overflow

[Example]

>DI SABLE WATCHDOG
>G0

75

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.3

Commands Available during Execution of User Program

This section explains the commands available during the execution of a user program.

B Commands Available during Execution of User Program

This emulator debugger allows you to use certain commands during the execution of a user program.
For more details, see "l Debugger” in "SOFTUNE Workbench Command Reference Manual”.
The double circle indicates that it is available during the execution of a user program.

Table 2.2-4 shows the commands availabl e during the execution of a user program.

Table 2.2-4 Commands Available during Execution of User Program

Function

Restrictions

Major Commands

MCU reset

1.3 RESET

Memory operation (Read/Write)

Emulation memory only operable
Read only enabled in mirror area

5.1 EXAMINE,

5.2 ENTER,

5.3 SET MEMORY,

5.4 SHOW MEMORY,
5.5 SEARCH MEMORY,
5.8 COMPARE,
59FILL,

5.10 MOVE,

5.11 DUMP

Line assembly, Disassembly

Emulation memory only enabled
Mirror area, Disassembly only enabled

6.1 ASSEMBLE,
6.2 DISASSEMBLE

Displaying coverage measurement) 4.19 SHOW COVERAGE

data

Displaying event Disabled in performance mode 3.23 SHOW EVENT
Notes:

e The conditions which allow you to use the commands in Table 2.2-4 are limited to the following

cases when a user program is executed.
- [Debug] - [Run] - [Go] menu
- [Go] button on the debug toolbar

The commands in Table 2.2-4 cannot be used when the GO command is entered in the command

window.

< An error message appears if you enter a command that cannot be used during the execution of a

user program.

"E4404S Command error (MCU is busy)."

76

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.4 On-the-fly Memory Access

While on-the-fly, the area mapped to the emulation memory is Read/Write enabled, but
the area mapped to the user memory area is Read-only enabled.

B Read/Write Memory while On-the-fly
The user memory cannot be accessed while on-the-fly (when execute the MCU). However, the emulation
memory can be accessed. (The using cycle-steal algorithm eliminates any negative effect on the MCU
speed.)
This emulator allows the user to use part of the emulation memory as a mirror area. The mirror area holds a

copy of the user memory. Using this mirror area makes the Read-only enabled function available while on-
the-fly.

Each memory area operates as follows:
- User Memory Area

Access to the user memory is permitted only when the operation is suspended by a break.
- Emulation Memory Area

Access to the emulation memory is permitted regardless of whether the MCU is suspended, or while on-
the-fly.

- Mirror Area

The emulation memory with the MIRROR setting can be set up for the user memory areato be referred to
while on-the-fly. This areais specifically called the mirror area.

Asshown in Figure 2.2-1, the mirror area performs access to the user memory while the MCU is stopped,
and such access is reflected simultaneously in the emulation memory specified as the mirror area. (Read
access is a so reflected in the emulation memory specified as the mirror area).

In addition, as shown in Figure 2.2-2, access to the user memory by the MCU is reflected "as it is" in the
emulation memory of the mirror area.

While on-the -fly, the user memory cannot be accessed. However, the emulation memory specified as the
mirror area can be read instead. 1n other words, identical datato that of the user memory can be read by
accessing the mirror area.

However, at least one time access must be allowed before the emulation memory of the mirror area has
the same data as the user memory. The following copy types alow the emulation memory of the mirror
area to have the same data as the user memory.

(1) Copying all datawhen setting mirror area
When, /COPY is specified with the mirror area set using the SET MAP command, the whole area is
specified, asthe mirror areaiis copied.

(2) Copying only required portion using memory access commands
Datain the specified portion can be copied by executing a command that accesses memory.

77

CHAPTER 2 DEPENDENCE FUNCTIONS

The following commands access memory.

- Memory operation commands
SET MEMORY, SHOW MEMORY, EXAMINE, ENTER,
COMPARE, FILL, MOVE, SEARCH MEMORY, DUMP,
COPY, VERIFY

- Data load/save commands

LOAD, SAVE

Figure 2.2-1 Access to Mirror Area while MCU Suspended

Memory access
Executing] Emulation memory
command (Mirror setting)
A
Reflected
MCL_J
operation User memory
(Suspended)

Figure 2.2-2 On-the-fly Access to Mirror Area

Memory read
Executing Emulation memory

A

command (Mirror setting)
A
Reflected
Memory access
MCU . .
operation User memory
(Operating)

Note:
Memory access by a bus master other than the MCU is not reflected in the mirror area.

78

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.5 Break

In this emulator debugger, seven types of break functions can be used. When the
program execution is aborted by each break function, the address and the break factor to
do the break are displayed.

B Break Functions
In this emulator debugger, the following seven types of break functions are supported.
e Code break
e Databreak
e Sequential break
¢ Guarded access break
» Trace-buffer-full break
« Performance-buffer-full break
» Forced break

79

CHAPTER 2 DEPENDENCE FUNCTIONS

2.25.1 Code Break

It is a function to abort the program execution by observing the specified address. The
break is done before an instruction the specified address is executed.

B Code Break
It is a function to abort the program execution by observing the specified address. The break is done before
an instruction the specified address is executed. It is possible to set it in this 65535 debuggers. However, it is
necessary to set the debugging area as a code break area.
When a break occurs due to a code break, the following message is displayed on the Status Bar.
Break at Address by breakpoint
B Setting Method
The code break is controlled by the following method.
* Command
- SET BREAK
Refer to "3.1 SET BREAK (type 1)" in "SOFTUNE Workbench Command Reference Manual".
« Diaog
- Breakpoints set dialog [Code] tab
Refer to "4.6.4 Breakpoint" in "SOFTUNE Workbench Operation Manua".
* Window
- Source window/Disassembly window

B Notes on Code Break
There are severa pointsto note in using code break. First, some points affecting code break are explained.

® Invalid Breakpoints

« No break occurs when a breakpoint is set at the instruction immediately after the following instructions.

F°MC-16/16L/16LX/16H: *PCB «DTB «NCC *ADB +SPB «CNR
* MOV ILM#mm8 «AND CCR#mm8
*OR CCR#mMmmM8 » POPW PS
F°MC-16F: *PCB «DTB «NCC «ADB +SPB «CNR
* No break occurs when breakpoint set at address other than starting address of instruction.
* No break occurs when both following conditions met at one time.
- Instruction for which breakpoint set starts from odd-address
- Preceding instruction longer than 2 bytes length, and breakpoint already set at last 1-byte address of

preceding instruction (This "already-set" breakpoint is an invalid breakpoint that won't break, because
it has been set at an address other than the starting address of an instruction.)

80

CHAPTER 2 DEPENDENCE FUNCTIONS

® Abnormal Breakpoint

e Setting a breakpoint at the instruction immediately after string instructions listed below, may cause a
break in the middle of the string instruction without executing the instruction to the end.

F°MC-16/16L/16LX/16H: * MOVS + MOVSW * SECQ * SECQW * WBTS
*MOVSI «MOVSWI * SECQI * SECQWI +«WBTC
*MOVSD +«MOVSWD «SECQD * SECQWD
*FILS *FILSI * FILSW * FILSWI

F2MC-16F: Aboveplus * MOVM e« MOVMW

Here are some additional points about the effects on other commands.

@® Dangerous Breakpoints

Never set a breakpoint at an address other than the instruction starting address. If a breakpoint is the last 1
byte of an instruction longer than 2 bytes length, and if such an address is even, the following abnormal
operation will result:

- If instruction executed by STEP command, instruction execution not aborted.

- If breakpoint specified with GO command, set at instruction immediately after such instruction, the
breakpoint does not break.

Note:
When the debugging area is set again, all breakpoints in the area are cleared.

81

CHAPTER 2 DEPENDENCE FUNCTIONS

2.25.2 Data Break

The data break is a function to abort the program execution when the data access (read
or write) is done to the address specified while executing the program.

B Data Break
The data break is a function to abort the program execution when MCU accesses data as for a specified
address.
When a break occurs due to a data break, the following message is displayed on the Status Bar.
Break at Address by databreak at Access address
The number to which the data break can be set is as follows.
In debugging area of data attribute: 65535 pieces
Other areas.6 pieces
B Setting Method
The data break is controlled by the following method.
e Command
- SET DATABREAK
Refer to "3.10 SET DATABREAK (type 2)" in "SOFTUNE Workbench Command Reference
Manual".
« Diaog
- Breakpoints set dialog [Data] tab
Refer to "4.6.4 Breakpoint”" in "SOFTUNE Workbench Operation Manual".

Note:
When the debugging area is set again, all breakpoints in the area are cleared.

82

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.5.3 Sequential Break

A sequential break is a function to abort a executing program, when the sequential
condition is met by event sequential control.

B Sequential Break
It is afunction to discontinue the program execution when the sequential condition consists by the sequential
control of the event. Use a sequential break when the event mode is set to normal mode using the SET
MODE command.
When a break occurs due to a sequential break, the following message is displayed on the Status Bar.
Break at Address by sequential break (level = Level No.)
For details of the sequential break function, refer to Section "2.2.7 Control by Sequencer".

B Setting Method
The sequential break is controlled by the following method.

1. Set event mode (SET MODE)
2. Set events (SET EVENT)
3. Set sequencer (SET SEQUENCE)

83

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.5.4

Guarded Access Break

The guarded access break is an abortion of the program execution that happens when
the violation to the set access attribute, doing the access, and guarded (An undefined
area cannot be accessed) area are accessed.

Bl Guarded Access Break

A guarded access break aborts a executing program when access is made in violation of the access attribute
set by using the [Setup] - [Memory Map] menu, and access is attempted to a guarded area (access-disabled
areain undefined areq).

There are three types of the following in Guarded access break.
Code guarded

When the instruction execution is done to the area without the code attribute, the break is done.
Read guarded

When the area without the read attribute is read, the break is done.
Write guarded

When the area without the write attribute is write, the break is done.

If a guarded access occurs while executing a program, the following message is displayed on the Status Bar
and the program is aborted.

Break at Address by guarded access { code/read/write} at Access address

Note:

Code Guarded is affected by pre-fetching.

The F2MC-16L/16LX/16/16H family pre-fetch up to 4 bytes. So, when setting the program area
mapping, set a little larger area (5 bytes max.) than the program area actually used.

Similarly, the F2MC-16F family pre-fetch up to 8 bytes. So, when setting the program area mapping,
set a little larger area (9 bytes max.) than the program area actually used.

84

CHAPTER 2 DEPENDENCE FUNCTIONS

2.25.5 Trace-Buffer-Full Break

It is a function to abort the program execution when the trace buffer becomes full.

B Trace-Buffer-Full Break

It isafunction to abort the program execution when the trace buffer becomes full.

When a break occurs due to atrace-buffer-full break, the following message is displayed on the Status Bar.

Break at Address by trace buffer full
B Setting Method
The trace-buffer-full break is controlled by the following method.
e Command
- SET TRACE/BREAK
Refer to "4.29 SET TRACE (type 1)" in "SOFTUNE Workbench Command Reference Manual".
- Diaog
- Trace Set Dialog
Refer to "4.4.8 Trace" in "SOFTUNE Workbench Operation Manual".

85

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.5.6 Performance-Buffer-Full Break

It is a function to abort the program execution when the buffer for the performance
measurement data storage becomes full.

B Performance-Buffer-Full Break
It isafunction to abort the program execution when the buffer for the performance measurement data storage
becomes full.

When a break occurs due to a performannce-buffer-full break, the following message is displayed on the
Status Bar.
Break at Address by performance buffer full
B Setting Method
The performance-buffer-full break is controlled by the following method.
* Command
- SET PERFORMANCE/BREAK
Refer to "4.7 SET PERFORMANCE (type 1)" in "SOFTUNE Workbench Command Reference
Manual".
« Didog
- Performance set dialog
Refer to "4.4.13 Performance” in "SOFTUNE Workbench Operation Manual”.

86

CHAPTER 2 DEPENDENCE FUNCTIONS

2.25.7 Forced Break

It is a function to abort the execution of the program compulsorily.

B Forced Break
It isafunction to abort the execution of the program compulsorily.
When a break occurs due to aforced break, the following message is displayed on the Status Bar.
Break at Address by command abort request

Note:

A forced break is not allowed while the MCU is in the low-power consumption mode or hold state.
When a forced break is requested by the [Debug] - [Abort] menu while executing a program, the menu
is disregarded if the MCU is in the low-power consumption mode or hold state. If a break must occur,
then reset the cause at user system side, or reset the cause by using the [Debug] - [Reset MCU]
menu, after inputting the [Debug] - [Abort] menu.

When the MCU enters the power-save consumption mode or hold state while executing, the status is
displayed on the Status Bar.

87

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.6 Events

The emulator can monitor the MCU bus operation, and generate a trigger at a specified

condition called an event.

In this emulator, event triggers are used in order to determine which function event
triggers are used accounting to event modes for the following functions;

* Sequencer

» Sampling condition for multi-trace
* Measuring point in performance measurement

B Setting Events

Eight events or less can be set.

Table 2.2-5 shows the conditions that can be set for events.

Table 2.2-5 Conditions for Setting Events

Condition Description
Address Memory location (Address bit masking enabled)
Data 8-hit data (data bit masking enable)
NOT specified enable
Status Select from among dada read, data write, instruction execution and data
modify.
External Probe 8-bit data (bit masking enable)

Notes:

< In instruction execution, an event trigger is generated only when an instruction is executed. This
status cannot be specified concurrently with other status.

« The data modify is a function to generate the event trigger when the data of a specified address
rewrites. When the data modify is specified for status, the data specification is disregarded. This
status cannot be specified concurrently with other status.

Use the following commands to set an event.

SET EVENT:
SHOW EVENT:
CANCEL EVENT:
ENABLE EVENT:

DISABLE EVENT:

88

Sets event

Display event setup status
Deletes event

Enable event

Disable event

CHAPTER 2 DEPENDENCE FUNCTIONS

[Example]
>SET EVENT 1, funcl
>SET EVENT/ WRI TE 2, data[2], ! d=h' 10
>SET EVENT/ MODI FY 3, 102

An event can be set in the Event window as well.

B Event Modes
There are three event modes as listed below. To determine which function event triggers are used for, select
one using the SET MODE command. The default is normal mode.

The event value setting are made for each mode, so switching the event mode changes the event settings as
well.

- Normal Mode

Event triggers used for sequencer.

Since the sequencer can perform control at 8 levels, it can control sequential breaks, time measurement
and trace sampling. Real-time tracing in the norma mode is performed by single trace (tracing function
that samples program execution continuously).

- Multi Trace Mode

Event triggers used for multitracing (trace function that samples data before and after event trigger
occurrence).

- Performance Mode

Event triggers are used for performance measurement to measure time duration between two event trigger
occurrences and count of event trigger occurrences.

89

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.6.1 Operation in Normal Mode

As shown in the figure below, the event trigger set in the normal mode performs input to
the sequencer. In the sequencer, either branching to any level, or terminating the
sequencer, can be specified as an operation at event trigger occurrence. This enables
debugging (breaks, limiting trace, measuring time) while monitoring program flow.

B Operation in Normal Mode

The termination of sequencer triggers the delay counter. When the delay counter reaches the specified count,
sampling for the single trace terminates. A break normally occurs at this point, but if necessary, the program
can be alowed to run on without a break.

Figure 2.2-3 Operation in Normal Mode

DISABLE TRACE - SHOW TRACE/STATUS ,» SET TRACE
ENABLE TRACE ~. _ . , . ’
A S ¥
Enable/Disable Buffer-full break
SHOW TRACE/DATA w control control
SET SEQUENCE/NO TRACE +_ c c AN
SET SEQUENCE/ENABLE TRACE ., CFEAR TRACE =31 gingle trace measurement
SET SEQUENCE/DISABLE TRACE . . A~
. . . SEARCH TRACE .
SET EVENT SHOW SEQUENCE 'e"e"\\ Enable/Disable | - pjeasurement ends
! CANCELEVENT ! CANCEL e Tl NN
' . i SEQUENCE/TIMER._ . IRRESUERNUNI
. , | SEQUENCE/ S A
v s s ;
| SEQUENCEITIMER~~.__ g 3vescmnens When each condition at each level met
| "B Timer setup |
Enable . : foreach E
Select event number causing : condition i When count ends
Events trigger at each level, set oo eeno .4 |When conditon met
Disable | pass count value. Delay
counter
A A Sequencer stucing MCU
' ' When count endgyf "o uctng ML 0 <~
: 3 SET : Timer latch suspend operation
! . .. SEQUENCE/EVENT | : - —~ A
CANCEL : X
! \ DISABLE EVENT SEQUENCE/EVENT v » vy »
i | SHOW SEQUENCE/ALL SHOW DELAY SET DELAY

v ENABLE EVENT
SHOW EVENT

90

B Event-related Commands in Normal Mode
Since the real-time trace function in the normal mode is actually the single trace function, the commands can

be used to control.

Table 2.2-6 shows the event-related commands that can be used in the normal mode.

Table 2.2-6 Event-related Commands in Normal Mode

Mode

Usable Command

Function

Normal Mode

SET EVENT Set event

SHOW EVENT Displays event setup status
CANCEL EVENT Delete event

ENABLE EVENT Enables event

DISABLE EVENT Disables event

SET SEQUENCE Sets sequencer

SHOW SEQUENCE Displays sequencer setup status
CANCEL SEQUENCE Cancels sequencer

ENABLE SEQUENCE
DISABLE SEQUENCE

Enables sequencer
Disables sequencer

SET DELAY Sets delay count

SHOW DELAY Displays delay count setup status
SET TRACE Sets trace buffer-full break
SHOW TRACE Displays trace data

SEARCH TRACE Searches trace data

ENABLE TRACE Enables trace function
DISABLE TRACE Disables trace function

CLEAR TRACE Clearstrace data

CHAPTER 2 DEPENDENCE FUNCTIONS

91

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.6.2 Operation in Multi Trace Mode

When the multi trace mode is selected as the event mode, the real-time trace function
becomes the multi trace function, and events are used as triggers for multitracing.

B Operation in Multi Trace Mode

Multitracing is a trace function that samples data before and after an event trigger occurrence. When the
multi trace mode is selected as the event mode, the real-time trace function becomes the multi trace function,
and events are used as triggers for multitracing.

Figure 2.2-4 Operation in Multi Trace Mode

SHOW MULTITRACE/STATUS

SET EVENT ENABLE MULTITRACE ‘ A
; : ! SET MULTITRACE
CANCEL EVENT DISABLE MULTITRACE
Y » PN -
Enable/Disable control | Buffer full break control [~ an?;tSthing
0
suspend
operation
Enable Al bled
Events eneenrzueetri evgrn ©
Disable| ¢ 99 / Multitrace measurement
\
DISABLE EVENT CLEAR MULTITRACE SEARCH MULTITRACE
ENABLE EVENT \J
v SHOW MULTITRACE
SHOW EVENT

92

CHAPTER 2 DEPENDENCE FUNCTIONS

B Event-related Commands in Multi Trace Mode
Table 2.2-7 shows the event-related commands that can be used in the multi-race mode.

Table 2.2-7 Event-related Commands in Multi Trace Mode

Mode Usable Command Function

SET EVENT Sets event
SHOW EVENT Displays event setup status
CANCEL EVENT Deletes event
ENABLE EVENT Enables event
DISABLE EVENT Disables event

Multi Trace Mode | geT MULTITRACE Sets trace buffer-full break
SHOW MULTITRACE Displays trace data
SEARCH MULTITRACE Searches trace data
ENABLE MULTITRACE Enables trace function
DISABLE MULTITRACE Disables trace function
CLEAR MULTITRACE Clearstrace data

93

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.6.3 Operation in Performance Mode

Event triggers set in the performance mode are used to measure performance. The time
duration between two event occurrences can be measured and the event occurrences
can be counted.

B Operation in Performance Mode

The event triggers that are set in the performance mode are used to measure performance. The time duration
between two event occurrences can be measured and the event occurrences can be counted.

Figure 2.2-5 Operation in Performance Mode

SHOW PERFORMANCE/STATUS

SET EVENT A
: ; SET PERFORMANCE
CANCEL EVENT
Y » ¥
Buffer full break control P! Instructing
MCU to
suspend
operation
Enable | Limited to following

Events combinations:
Disable 1,2 3456 7,8 / Performance measurement

[4

DISABLE EVENT CLEAR PERFORMANCE
ENABLE EVENT \J

\/ SHOW PERFORMANCE
SHOW EVENT

94

CHAPTER 2 DEPENDENCE FUNCTIONS

B Event-related Commands in Performance Mode
Table 2.2-8 shows the event-related commands that can be used in the performance mode.

Table 2.2-8 Event-related Commands in Performance Mode

Mode Usable Command Function

SET EVENT Sets event
SHOW EVENT Displays event setup status
CANCEL EVENT Deletes event
ENABLE EVENT Enables event

Performance Mode | DISABLE EVENT Disables event
SET PERFORMANCE Sets performance
SHOW PERFORMANCE Displays performance setup status
CLEAR PERFORMANCE Clears performance measurement data

95

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.7

Control by Sequencer

This emulator has a sequencer to control events. By using this sequencer, sampling of
breaks, time measurement and tracing can be controlled while monitoring program flow
(sequence). A break caused by this function is called a sequential break.

To use this function, set the event mode to normal mode using the SET MODE command.
Use the SET EVENT command to set events.

B Control by Sequencer

96

Asshown in Table 2.2-9, controls can be made at 8 different levels.
At each level, 8 events and 1 timer condition (9 conditionsin total) can be set.

A timer condition is met when the timer count starts at entering a given level and the specified time is
reached.

For each condition, the next operation can be specified when the condition is met. Select any one of the
following.

- Moveto required level.
- Terminate sequencer.

The conditions set for each level are determined by OR. Therefore, if any one condition is met, the sequencer
either moves to the required level, or terminates. In addition, trace sampling abort/resume can be controlled
when a condition is met.

Table 2.2-9 Sequencer Specifications

Function Specifications

Level count 8levels

Conditions settable for each level 8 event conditions (1 to 16777216 times pass count can be
specified for each condition.)

1 timer condition (Upto 16 s.in 1 usunitsor up to 1.6 s.in 100 ns
units can be specified.*)

Operation when condition met Branches to required level or terminates sequence.
Controlstrace sampling.

Other function Timer latch enable at level branching

Operation when sequencer terminates | Starts delay counter

*: The minimum measurement unit for Timer value can be set to either 1 us or 100 ns using the SET
TIMERSCALE command.

2.2.7.1 Setting Sequencer

CHAPTER 2 DEPENDENCE FUNCTIONS

The sequencer operates in the following order:

(1) The sequencer starts from level 1 simultaneously with the start of program executing.

(2) Depending on the setting at each level, branching to the required level is performed

when the condition is met.

(3) When sequencer termination is specified, the sequencer terminates when the

condition is met.

(4) When the sequencer terminates, the delay counter starts counting.

B Setting Sequencer
Figure 2.2-6 shows the sequencer operation.

Figure 2.2-6 Operation of Sequencer

Start executing program. (Start sequencer.)

—

Set Conditions

Operation when Condition Met

[Use event number 1-] —» [Pass counter]
[Use event number 2-] —» [Pass counter]
[Use event number 3-] — [Pass counter]
[Use event number 4-] — [Pass counter]
[Use event number 5-] — [Pass counter]
[Use event number 6-] — [Pass counter]
[Use event number 7-] —» [Pass counter]
[Use event number 8-] — [Pass counter]

Timer condition [Waiting time]

—» [Trace control]/ [Branch level number]
—» [Trace control]/ [Branch level number]
—» [Trace control]/ [Branch level number]
—» [Trace control]/ [Branch level number]
—» [Trace control]/ [Branch level number]
—» [Trace control]/ [Branch level number]
—» [Trace control]/ [Branch level number]
— [Trace control]/ [Branch level number]

— [Trace control]/ [Branch level number]

Terminat

Branch to specified level.

sequencer

Start delay

97

CHAPTER 2 DEPENDENCE FUNCTIONS

[Setup Examples]

- Terminate sequencer when event 1 occurs.
>SET SEQUENCE/ EVENT 1, 1, J=0

- Terminate sequencer when event 2 occurs 16 times.
>SET SEQUENCE/ EVENT 1, 2, 16, J=0

- Terminate sequencer when event 2 occurs after event 1 occurred. However, do not terminate sequencer
if event 3 occurs between event 1 and event 2.
>SET SEQUENCE/ EVENT 1,1, J=2
>SET SEQUENCE/ EVENT 2, 2, J=0
>SET SEQUENCE/ EVENT 2, 3, J=1

- Terminate sequencer if and when event 2 occurs less than 300 us after event 1 occurred.
>SET SEQUENCE/ EVENT 1,1, J=2
>SET SEQUENCE/ EVENT 2, 2, J=0
>SET SEQUENCE/ TI MER 2, 300, J=1
>SHOW SEQUENCE

Sequencer Enabl e

levell level2 level3 leveld level5 level6 level7 level8

[[[[[
Indicates i o ||
move to level . ndicate sterrr]mnatlng , -
2 when event Sequenctelr W Ie; event
1 occurs at [occurs at level 2. o
level 1
[[] [[] [
[1 [
[

Latch 1 (->) = Latch 2 (->) =
>SHOW SEQUENCE 2

level no. =2 Indicates move to level 1 if and

event pass- count trace-cntil when 300us passed before
event 2 occurs at level 2

2 1 enabl e

timer 00: 00: 000: 300: 000 enabl e 1

98

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.7.2 Break by Sequencer

A program can suspend program execution when the sequencer terminates. This break
is called a sequential break.

W Break by Sequencer

A program can suspend program execution when the sequencer terminates. This break is called a sequential
break.

As shown in Figure 2.2-7, the delay count starts when the sequencer terminates, and after delay count ends,
either "break" or "not break but tracing only terminates’ is selected as the next operation.

To make a break immediately after the sequencer terminates, set delay count to O and specify "Break after
delay count terminates’. Use the SET DELAY command to set the delay count and the operation after the
delay count.

The default is delay count O, and Break after delay count.

Figure 2.2-7 Operation when sequencer terminates

Tracing terminates

Break (Sequential break)

Sequencer Delay Count ends
terminates counter

Tracing terminates
Not break

[Examples of Delay Count Setups]
- Break when sequencer terminates.
>SET DELAY/ BREAK 0
- Break when 100-bus-cycle tracing done after sequencer terminates.
>SET DELAY/ BREAK 100
Terminate tracing, but do not break when sequencer terminates.
>SET DELAY/ NOBREAK 0
Terminate tracing, but do not break when 100-bus-cycle tracing done after sequencer terminates.
>SET DELAY/ NOBREAK 100

99

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.7.3

Trace Sampling Control by Sequencer

When the event mode is in the normal mode, real-time trace executing tracing called

single trace.

If the trace function is enabled, single trace samples all the data from the start of
executing a program until the program is suspended.

B Trace Sampling Control by Sequencer

100

Sets up suspend/resume trace sampling for each condition at each level of the sequencer. Figure 2.2-8 shows
the trace sampling flow.

For example, it is possible to suspend trace sampling when event 1 occurs, and then resume trace sampling
when event 2 occurs. Trace data sampling can be restricted.

Figure 2.2-8 Trace Sampling Control (1)

Resume
Start Suspend Resume Suspend Suspend

l ! l ! |l
Program flow >

Trace buffer

As shown in Figure 2.2-9, trace sampling can be disabled during the period from the start of a program
execution until the first condition occurs. For this setup, use the GO command or the SET GO command.
[Example]

>G0 DI SABLETRACE

>SET GO DI SABLETRACE

>0
Figure 2.2-9 Trace Sampling Control (2)
Resume Resume
Start Suspend Resume Suspend Suspend
| l l ! I
Program flow >

Trace buffer

CHAPTER 2 DEPENDENCE FUNCTIONS

[Setup Exampl€]

Suspend trace sampling when event 1 occurs, and then resume at event 2 and keep sampling data until

event 3 occurs.
Start

Event 1
occurs

= Level 1

Suspend trace sampling.

A 4

™= Level 2
Event 2 NO
occurs
YES
Resume trace sampling.
= |evel 3

Event 3
occurs

Suspend trace sampling.

>SET SEQUENCE/ EVENT/ DI SABLETRACE 1, 1, J=2
>SET SEQUENCE/ EVENT/ ENABLETRACE 2, 2, J=3
>SET SEQUENCE/ EVENT/ DI SABLETRACE 3, 3, J=2

101

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.7.4

Time Measurement by Sequencer

Time can be measured using the sequencer. A time measurement timer called the
emulation timer is used for this purpose. When branching is made from a specified level
to another specified level, a timer value is specified. Up to two emulation timer values can
be fetched. This function is called the timer latch function.

B Time Measurement by Sequencer

102

The time duration between two given points in a complex program flow can be measured using the timer
latch function.

The timing for the timer latch can be set using the SET SEQUENCE command; the latched timer values can
be displayed using the SHOW SEQUENCE command.

When a program starts execution, the emulation timer isinitialized and then starts counting. Select either 1 us
or 100 ns as the minimum measurement unit for the emulation timer. Set the measurement unit using the SET
TIMESCALE command.

When 1 ps is selected, the maximum measured time is about 70 minutes; when 100 ns is selected, the
maximum measured time is about 7 minutes. If the timer overflows during measurement, a warning message
is displayed when the timer value is displayed using the SHOW SEQUENCE command.

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.7.5 Sample Flow of Time Measurement by Sequencer

In the following sample, when events are executed in the order of Event 1, Event 2 and
Event 3, the execution time from the Event 1 to the Event 3 is measured. However, no

measurement is made if Event 4 occurs anywhere between Event 1 and Event 3.

B Sample Flow of Time Measurement by Sequencer

Start

= |evel 1

Event 1 NO
occurs

YES

= Level 2

Branch from level 1 to level

2 (Timer latch 1)

YES _—Eventd

occurs

Event 2
occurs

VES
__
= | evel 3
YES _—Eventd
occurs
Event 3 NO
OCCuUrs
YES
—

End

Sequencer terminates at level 3 (Timer latch 2)

103

CHAPTER 2 DEPENDENCE FUNCTIONS

104

Indicates
that, if event
1 occursat
level 1, move
to level 2 and
|et the timer
|atched.

>SET
>SET
>SET
>SET
>SET
>SET
>SET

SEQUENCE/ EVENT
SEQUENCE/ EVENT
SEQUENCE/ EVENT
SEQUENCE/ EVENT
SEQUENCE/ EVENT
SEQUENCE/ LATCH
SEQUENCE/ LATCH

>SHOW SEQUENCE

Sequencer Enabl e

level 1l level2
11#2 | | |
12]->3 |
| 4] ->1
I |
I |
70 [|
8 | | I |
T | TI->1 |

Latch 1 (1->2)

| evel 3

1,1,J=2
2,4,3=1
2,2,J=3
3,4,J=1
3,2,J=0
1,1,2
2,3,0

|| | 3| #end |
| 4] ->1 |

= 00nD2s060nms379. Ous

Indicates that, if event 3
occurs at level 3, the
sequencer terminates and
let the timer latched.

| evel 4 | evel 5

| evel 6

I I
Latch 2 (3->E)

| evel 7 | evel 8

= 00nML6s040nms650. Ous

minutes

seconds

milliseconds

Indicate time values of timer latch 1 and timer latch 2. Thetime
value, deducting the value of the timer latch 1 from the value of the
timer latch 2, represents the execution time.

Timeisdisplayed in the following format.

00m 00s 000ms 0000us

microseconds

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.8 Real-time Trace

While execution a program, the address, data and status information, and the data
sampled by an external probe can be sampled in machine cycle units and stored in the
trace buffer. This function is called real-time trace.

In-depth analysis of a program execution history can be performed using the data
recorded by real-time trace.

There are two types of trace sampling: single trace, which traces from the start of
executing the program until the program is suspended, and multi trace, which starts
tracing when an event occurs.

B Trace Buffer
The data recorded by sampling in machine cycle units, is called aframe.

The trace buffer can store 32K frames (32768). Since the trace buffer has a ring structure, when it becomes
full, it automatically returns to the start to overwrite existing data.

B Trace Data

Data sampled by the trace function is called trace data.

Thefollowing datais sampled:

e Address

« Data

e Status Information
- Access status: Read/Write/Internal access, etc.
- Device status: Instruction execution, Reset, Hold, etc.
- Queue status: Count of remaining bytes of instruction queue, etc.
- Datavalid cycleinformation: Datavalid/invalid

(Since the data signal is shared with other signals, it does not always output data. Therefore, the trace
samples information indicating whether or not the datais valid.)

External probe data
e Sequencer execution level
B Data Not Traced
The following data does not leave access data in the trace buffer.

- Data after tool hold

The FPMC-16/16L/16LX/16H/16F family execute the following operation immediately after a break, etc.,
lets MCU suspend (atool hold). This datais not displayed because it is deleted from the trace buffer.

- Access to address 100
- Accessto FFFFDC to FFFFFF

- Portion of access data while native mode.
When operating in the native mode, the F2M C-16/16L/16L X/16H/16F fami ly of chips sometime performs
simultaneous multiple bus operations internally. However, in this emulator, monitoring of the internal

ROM bus takes precedence. Therefore, other bus data being accessed simultaneously may not be sampled
(in the debugging mode, all operations are sampled).

105

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.8.1

Single Trace

The single trace traces all data from the start of executing a program until the program is

aborted.

B Function of Single Trace

106

The singletraceis enabled by setting the event mode to norma mode using the SET MODE command.
The single trace traces all datafrom the start of executing a program until the program is suspended.

If the real-time trace function is enabled, data sampling continues execution to record the data in the trace
buffer while the GO, STEP, CALL commands are being executed.

As shown in Figure 2.2-10, suspend/resume trace sampling can be controlled by the event sequencer. Since
the delay can be set between the sequencer terminating the trigger and the end of tracing, the program flow
after an given event occurrence can be traced. The delay count is counted in pass cycle units, so it matches
the sampled trace data count. However, nothing can be sampled during the delay count if trace sampling is
suspended when the sequencer is terminated.

After the delay count ends, a break occurs normally due to the sequential break, but tracing can be terminated
without a break.

Furthermore, a program can be alowed to break when the trace buffer becomes full. This break is called a
trace-buffer-full break.

Figure 2.2-10 Sampling in Single Trace

Sequencer Delay counter
Suspend Resume Sequencer terminates Tracing
sampling sampling Trigger terminates

Start program

Program|flow

Trace buffer

Delay

CHAPTER 2 DEPENDENCE FUNCTIONS

B Frame Number and Step Number in Single Trace
The sampled trace data is numbered in frame units. This number is called the frame number.

When displaying trace data, the starting location in the trace buffer can be specified using the frame number.
The trace data at the point where the sequencer termination trigger occurs is numbered O; trace data sampled

before reaching the trigger point is numbered negatively, and the data sampled after the trigger point is
numbered positively (See Figure 2.2-11).

If there is no sequencer termination trigger point available, the trace data sampled last is numbered 0.

Figure 2.2-11 Frame Number in Single Trace

0 (Trigger point)
----------------- +1 3\
----------------- +2

----------------- +3
-----------------) > Delayed frames

This program can analyze the single trace result and sort the buffer data in execution instruction units (only
when the MCU execution mode is the debugging mode).

In this mode, the following information is grouped as one unit, and each information unit is numbered. This
number is called the step number.

- Execution instruction mnemonic information
- Data access information
- Device status information

The step number at the sequencer termination trigger is numbered O; information sampled before reaching the
trigger point is numbered negatively, and information sampled after the trigger point is numbered positively.

If there is no sequencer termination trigger point, the information sampled last is numbered 0.

107

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.8.2 Setting Single Trace

The following settings (1) to (4) are required before executing single trace. Once these
settings have been made, trace data is sampled when a program is executed.

(1) Set event mode to normal mode.

(2) Enable trace function.

(3) Set events, sequencer, and delay count.

(4) Set trace-buffer-full break.

B Setting Single Trace
The following settings are required before executing single trace. Once these settings have been made, trace
datais sampled when a program is executed.
(1) Set event mode to normal mode.
Use SET MODE command to make this setting.
(2) Enable trace function.

Use the ENABLE TRACE command. To disable the function, use the DISABLE TRACE command. The
default is Enable.

(3) Set events, sequencer, and delay count.
Trace sampling can be controlled by setting the sequencer for events. If this function is not needed, there
isno need of this setting.
To set events, usethe SET EVENT command. To set the sequencer, use the SET SEQUENCE command.

Furthermore, set the delay count between sequencer termination and trace ending, and the break operation
(Break or Not Break) when the delay count ends. If the data after event occurrence is not required, thereis
no need of this setting.

If Not Break is set, the trace terminates but no break occurs. To check trace data on-the-fly, use this setup
by executing the SET DELAY command.

Note:

When the sequencer termination causes a break (sequential break), the last executed machine cycle
is not sampled.

108

(4) Set trace-buffer-full break.

CHAPTER 2 DEPENDENCE FUNCTIONS

The program can be alowed to break when the trace buffer becomes full. Use the SET TRACE command
for this setting. The default is Not Break. Display the setup status using the SHOW TRACE/STATUS

command.

Table 2.2-10 lists trace-related commands that can be used in the single trace function.

Table 2.2-10 Trace-related Commands That Can Be Used in The Single Trace Function

ENABLE SEQUENCE
DISABLE SEQUENCE

Usable Command Function
SET EVENT Sets events
SHOW EVENT Displays event setup status
CANCEL EVENT Deletes event
ENABLE EVENT Enables event
DISABLE EVENT Disables event
SET SEQUENCE Sets sequencer.
SHOW SEQUENCE Displays sequencer setting status
CANCEL SEQUENCE Cancels sequencer

Enables sequencer
Disables sequencer

SET DELAY Sets delay count value, and operation after delay
SHOW DELAY Displays delay count setting status

SET TRACE Sets trace-buffer-full break

SHOW TRACE Displaystrace data

SEARCH TRACE Searches trace data

ENABLE TRACE Enables trace function

DISABLE TRACE Disables trace function

CLEAR TRACE Clears trace data

109

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.8.3

Multi trace

The multi trace samples data where an event trigger occurs for 8 frames before and after
the event trigger.

B Multi Trace Function

Execute multi trace by setting the event mode to the multi trace mode using the SET MODE command.
The multi trace samples data where an event trigger occurs for 8 frames before and after the event trigger.
It can be used for tracing required only when a certain variable access occurs, instead of continuous tracing.

The trace data sampled at one event trigger (16 frames) is called a block. Since the trace buffer can hold 32K
frames, up to 2048 blocks can be sampled. Multi trace sampling terminates when the trace buffer becomes
full. At this point, a executing program can be alowed to break if necessary.

Figure 2.2-12 Multi Trace Sampling
Start

execution Event 1 Event 2 Event 3

. ! ! !

Program flow

Trace buffer

-

Block

B Multi Trace Frame Number

110

Sixteen frames of data are sampled each time an event occurs. This data unit is caled a block, and each
sampled block is numbered starting from 0. Thisis called the block number.

A block is a collection of 8 frames of sampled data before and after the event trigger occurs. At the event
trigger is 0, trace data sampled before reaching the event trigger point is numbered negatively, and trace data
sampled after the event trigger point is numbered positively. These frame numbers are called local numbers
(See Figure 2.2-13).

In addition to this local number, there is another set of frame numbers starting with the oldest data in the
trace buffer. This is called the globa number. Since the trace buffer can hold 32K frames, frames are
numbered 1 to 32768 (See Figure 2.2-13).

To specify which frame datais displayed, use the global number or block and local numbers.

CHAPTER 2 DEPENDENCE FUNCTIONS

Figure 2.2-13 Frame Number in Multi Trace

Block number Trace buffer Frame number
Global number Local number
--------------------------- 1 -7
--------------------------- 2 -6
T [S ' : .

___________________________ 8 0 < Eventtrigger
........................... 15 +7
16 +8
--------------------------- 17 -7
........................... 18 6

2 S 2 0« Event trigger
........................... 31 +7
32 +8
--------------------------- 32752 -7
--------------------------- 32753 -6

2048 I e 0 Event trigger
___________________________ 32767 +7
32768 +8

111

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.8.4 Setting Multi Trace

Before executing the multi trace, the following settings must be made. After these
settings, trace data is sampled when a program is executed.

(1) Set event mode to multi trace mode.

(2) Enable trace function.

(3) Set event.

(4) Set trace-buffer-full break.

B Setting Multi Trace

Before executing the multi trace, the following settings must be made. After these settings, trace data is
sampled when a program is executed.

(1) Set event mode to multi trace mode.
Use the SET MODE command for this setting.
(2) Enable trace function.

Use the ENABLE MULTITRACE command. To disable the function, use the DISABLE MULTITRACE
command.

(3) Set event.

Set an event that sampling. Usethe SET EVENT command for this setting.
(4) Set trace-buffer-full break.

To break when the trace buffer becomes full, set the trace-buffer-full break. Use the SET MULTITRACE
command for this setting.

Table 2.2-11 shows the list of trace-related commands that can be used in multi trace mode.

Table 2.2-11 Trace-related Commands That Can Be Used in Multi Trace Mode

Usable Command Function
SET EVENT Sets events
SHOW EVENT Displays event setup status
CANCEL EVENT Deletes event
ENABLE EVENT Enables event
DISABLE EVENT Disables event

SET MULTITRACE
SHOW MULTITRACE
SEARCH MULTITRACE
ENABLE MULTITRACE
DISABLE MULTITRACE
CLEAR MULTITRACE

Sets trace-buffer-full break
Displaystrace data
Searches trace data
Enables multi trace
Disables multi trace
Clearstrace data

112

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.8.5 Displaying Trace Data Storage Status

It is possible to Displays how much trace data is stored in the trace buffer. This status
data can be read by specifying /STATUS to the SHOW TRACE command in the single
trace mode, and to the SHOW MULTITRACE command in the multi trace mode.

B Displaying Trace Data Storage Status

It is possible to Displays how much trace data is stored in the trace buffer. This status data can be read by
specifying /ISTATUS to the SHOW TRACE command in the single trace mode, and to the SHOW MULTITRACE
command in the multi trace.

Frame numbers displayed in the multi trace mode is the global number.
[Example]
- InSingle Trace
>SHOW TRACE/ STATUS

en/dis = enabl e . Trace function enabl ed
buffer full = nobreak . Buffer full break function disabl ed
sanpling = end . Trace sanpling term nates
frane no. = -00120 to 00050 : Frame -120 to 50 store data
step no. = -00091 to 00022 : Step -91 to 22 store data
>
- In Multi trace
>SHOW MULTI TRACE/ STATUS
en/ dis = enabl e : Multi trace function enabl ed
buffer full = nobreak : Buffer full break function disabl ed
sanpling = end . Trace sanpling term nates
block no. =1to 5 : Block 1 to 5 store data
frame no. = 00001 to 00159 : Franme 1 to 159 store data

(G obal number)

113

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.8.6 Specify Displaying Trace Data Start

It is possible to specify from which data in the trace buffer to display. To do so, specify a
frame number with the SHOW TRACE command in the single trace mode, or specify
either a global number, or a block number and local number with the SHOW MULTITRACE
command in the multi trace mode. A range can also be specified.

B Specifying Displaying Trace Data Start
It is possible to specify from which data in the trace buffer to displays. To do this, specify a frame number
with the SHOW TRACE command in the single trace, and specify either a global number, or a block number
and loca number with the SHOW MULTITRACE command in the multi trace. A range can aso be
specified.
[Example]
- InSingle Trace Mode

>SHOW TRACE/ CYCLE -6 . Start displaying fromframe -6
>SHOW TRACE/ CYCLE -6. .10 : Display fromframe -6 to franme 10
>SHOW TRACE - 6 . Start displaying fromstep -6
>SHOW TRACE - 6. .10 : Displays fromstep -6 to step 10

Note:
A step number can only be specified when the MCU execution mode is set to the debugging mode.

- In Multi trace
>SHOW MULTI TRACE/ GLOBAL 500 : Start displaying fromfrane 500 (d obal numnber)
>SHOW MULTI TRACE/ LOCAL 2 : Displaying bl ock nunber 2
>SHOW MULTI TRACE/ LOCAL 2,-5..5 : Display fromframe -5 to frame 5 of block nunber 2

114

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.8.7 Display Format of Trace Data

A display format can be chosen by specifying a command identifier with the SHOW
TRACE command in the single trace, and with the SHOW MULTITRACE command in the
multi trace. The source line is also displayed if "Add source line" is selected using the
SET SOURCE command.

There are three formats to display trace data:

» Display in instruction execution order (Specify /INSTRUCTION.)

» Display all machine cycles (Specify /ICYCLE.)

» Display in source line units (Specify /SOURCE.)

W Display in Instruction Execution Order (Specify /INSTRUCTION.)
Trace sampling is performed at each machine cycle, but the sampling results are difficult to Display because
they are influenced by pre-fetch, etc. Thisiswhy the emulator has a function to alow it to analyze trace data
as much as possible. The resultant data is displayed after processes such as eliminating pre-fetch effects,
analyzing execution instructions, and sorting in instruction execution order are performed automatically.
However, this function can be specified only in the single trace while in the debugging mode.

In this mode, data can be displayed in the following format.

115

CHAPTER 2 DEPENDENCE FUNCTIONS

Address ——
’/ Hexadecimal

Step Number
’/Decimal, signed “

Disassemble Description

Indecates instruction
executed

— Data

Display of sequencer level

Indicates sequencer level
executed when trace sampled.

Indicates 0 if sequencer not

B Displaying All Machine Cycles (Specify /ICYCLE.)

116

Detailed information at all sampled machine cycles can be displayed. In this mode, both single trace and
multi trace data can be displayed in amost identical formats. (In the multi trace mode, the local frame

number and block number are added.)

In this mode, data can be displayed in the following format. For further details, see the descriptions of the
SHOW TRACE, and SHOW MULTITRACE commands. In this mode, source is not displayed regardless of

the setup made using the SET SOURCE command.

in use.
Hexadecimal
>SHOW TRA(I NSTR ION -194
step no. addr es mmenoni ¢ | evel
sub4:
™4 - 00194 . FFO0106 LI NK #00 4
-00193 000186 internal read access. 10F2 5 /
-00192 1010E6 external wite access. 10F2 5
-00191 000186 internal wite access. 10E6 5
-00190 FF0108 ADDSP #F8 5
-00189 FFO10A MOVL A, 001A 5
-00188 10001A external read access. 0000 5
-00187 10001GX external read access. 4000 5
- 00186 FFO10E MOVL @P+04, A 5
- 00185 1010E external wite access. 0000 5 Device Status -
-00184 : FFO11 MOVL A, 0016
-00183 : * SET ** ** STANDBY ** : Hardware standby
> b ** RESET ** . Reset
** THOLD ** : Tool hold
— Data access *x UHOLD ** : User hold
. *x WAL T %% . Ready pin input
internal read access Read access to we SLEEP *+ : Sleep
internal memory .
** STOP ** : Stop
internal wite access: \Write access to
internal memory
external read access Read access to
external memory
external wite access: Write access to
external memory

CHAPTER 2 DEPENDENCE FUNCTIONS

[Example]

>>SHOW TRACE/ CYCLE - 587
frame no. address dat a a-status d-status Gst df g

- 00587 : FFO0106 0106 T FLH
- 00586 : FFO0106 0008 ECF EXECUTE --- @
- 00585 : FF0106 0106 --- EXECUTE ---
- 00584 : 1010E8 10E8 o ---
- 00583 : 1010E8 0102 EVA EXECUTE -- @
- 00582 :1010E8 0102 --- EXECUTE ---
- 00581 : 000186 0186 T 2by
- 00580 : 000186 10F2 | RA EXECUTE --- @
- 00579 : 1010E6 10E6 e ---
- 00578 :1010E6 10F2 EVWA EXECUTE --- @
- 00577 :1010E6 10F2 --- EXECUTE ---
- 00576 : 000186 0186 e ---

How toread trace data
frameno. address data astatus d-status Qst dfg level

(D) (©) 4 (5) (6) () (8)

(2):frame number (Decimal, number)
(2):executed instruction address, and data access address (Hexadecimal number)
(3):data (Hexadecimal number)

(4):access information (a-status)

WA : write access to internal memory
EWA write access to external memory
RA : read access to internal memory
ERA read access to external memory
ICF : code fetch to internal memory
ECF code fetch to external memory

: valid "d-status' information
(5):device information (d-status)
STANDBY : hardware standby

THOLD . tool hold

UHOLD . user hold

WAIT . waiting with ready pin
SLEEP : deep

STOP . stop

EXECUTE : executeinstruction
RESET . reset

------- . invalid d-status information
(6):instruction queue status

FLH:flush queue

-by:number of remainder code of queueis-byte(-:1 to 8)

| evel

N

[@2 [RGB @2 BN @ B @2 BN@) B2 NG5 I -

ext-probe

C)

ext - probe
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111

117

CHAPTER 2 DEPENDENCE FUNCTIONS

(7):vaidflag
@:valid framefor this data
(8):sequencer level
(9):external probe data
W Display in Source Line Units (Specify /SOURCE.)
Only the source line can be displayed. This mode is enabled only in the single trace mode while in the

debugging mode.
[Example]
>>SHOW TRACE/ SOURCE - 194

step no. source
-00194 : gtgl.c$251 {
-00190 : gtgl. c$255 sub5(nf, nd);
-00168 : gtgl.c$259 {
-00164 : gtgl. c$264 p = (char *) &df;
-00161 : gtgl. c$264 p = (char *) &df;
-00157 : gtgl. c$265 *(p++) = 0xO00;
-00145 : gtgl. c$266 *(p++) = 0x00;
-00133 : gtgl.c$267 *(p++) = Ox80;
-00121 : gtgl. c$268 *p = Ox7f;
-00116 : gtgl. c$270 p = (char *) ⅆ
-00111 : gtgl.c$271 *(p++) = Oxff;
-00099 : gtgl.c$272 *(p++) = Oxff;

118

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.8.8 Reading Trace Data On-the-fly

Trace data can be read while executing a program. However, this is not possible during

sampling. Disable the trace function or terminate tracing before attempting to read trace

data.

B Reading Trace Data On-the-fly in Single Trace

To disable the trace function, use the DISABLE TRACE command. Check whether or not the trace function
is currently enabled by executing the SHOW TRACE command with /STATUS specified, or by using the
built-in variable, % TRCSTAT.

Tracing terminates when the delay count ends after the sequencer has terminated. If Not Break is specified
here, tracing terminates without a break operation. It is possible to check whether or not tracing has
terminated by executing the SHOW TRACE command with /STATUS specified, or by using the built-in

variable, % TRCSAMP.

To read trace data, use the SHOW TRACE command; to search trace data, use the SEARCH TRACE
command. Usethe SET DELAY command to set the delay count and break operation after the delay count.

<- Trace sanpling continues.

<- Trace sanpling ends.

[Example]
>Q0
>>SHOW TRACE/ STATUS
en/dis = enabl e
buffer full = nobreak
sampl i ng = on
>>SHOW TRACE/ STATUS
en/dis = enabl e
buffer ful = nobr eak
sampl i ng = end
franme no. = -00805 to 00000
step no. = -00262 to 00000
>>SHOW TRACE - 52
step no. address menoni ¢
\ subb5:
- 00052 FF0125 LINK #02
- 00051 000186 internal read access.
- 00050 1010D6 external wite access.
- 00049 000186 internal wite access.

10E6
10E6
10D6

| evel

e

If the CLEAR TRACE command is executed with the trace ending state, trace data sampling can be re-
executed by re-executing the sequencer from the beginning.

119

CHAPTER 2 DEPENDENCE FUNCTIONS

B Reading Trace Data On-the-fly in the Multi Trace
Use the DISABLE MULTITRACE command to disable the trace function before reading trace data. Check
whether or not the trace function is currently enabled by executing the SHOW MULTITRACE command
with /[STATUS specified, or by using the built-in variable %TRCSTAT.
To read trace data, use the SHOW MULTITRACE command; to search trace data, use the SEARCH
MULTITRACE command

120

[Example]
>C0

>>SHOW MULTI TRACE/ STATUS

en/dis

buf fer ful

sanpl i ng

enabl e
nobr eak
on

>>DI SABLE MULTI TRACE
>>SHOW MULTI TRACE/ STATUS

en/dis = di sabl e
buffer full = nobreak
sanpl i ng = end
bl ock no. =1to 20
frame no. = 00001 to
>>SHOW MULTI TRACE 1
frane no. address
block no. =1
00001 -7 : 10109C
00002 -6 : 10109C
00003 -5 : 10109C
00004 -4 : FF0120

00639

dat a a- stat us d-status

109C --- e
0000 EWA EXECUTE
0000 --- EXECUTE
0120 --- eeee-e-

Qst

2by

df g

| eve

R R R e

ext - probe

11111111
11111111
11111111
11111111

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.8.9 Saving Trace Data

This section explains how to save trace data.

B Saving Trace Data
Trace data can be saved in a specified file.

The following two methods are available to save trace data: using GUI (window or dialog) and using only the
command. The same result is obtained from both methods.

® Using GUI for Saving Trace Data

1. Display the trace window.
- Select [View] - [Trace] menu.
2. Specify the name of the file in which to save trace data.
- Right-click on the trace window, and select [Save] from the shortcut menu. The [Save as] dialog

appears.
Specify the file name and where to save trace data. For details, refer to Section "4.4.8 Trace" in

"SOFTUNE Workbench Operation Manual".

® Using Command for Saving Trace Data

1. Savetrace data.
- Execute the SHOW TRACE/FILE command.
For details, refer to Section "4.33 SHOW TRACE (type 3)" in "SOFTUNE Workbench Command
Reference Manual".
When additionally saving trace data in an existing file, execute the SHOW TRACE/FILE/APPEND

command.

121

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.9 Measuring Performance

It is possible to measure the time and pass count between two events. Repetitive
measurement can be performed while executing a program in real-time, and when done,
the data can be totaled and displayed.

Using this function enables the performance of a program to be measured. To measure
performance, set the event mode to the performance mode using the SET MODE
command.

B Performance Measurement Function
The performance measurement function allows the time between two event occurrences to be measured and
the number of event occurrences to be counted. Up to 32767 event occurrences can be measured.

-Measuring Time
Measures time interval between two events.

Events can be set at 8 points (1 to 8). However, in the performance measurement mode, the intervals,
starting event number and ending event number are combined as follows. Four intervals have the

following fixed event number combination:

Interval Starting Event Number Ending Event Number

1 2
3 4
5 6
7 8

Al W[N] P

- Measuring Count

The specified events become performance measurement points automatically, and occurrences of that
particular event are counted.

122

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.9.1 Performance Measurement Procedures

Performance can be measured by the following procedure:
» Setting event mode.

e Setting minimum measurement unit for timer.

» Specify performance-buffer-full break.

e Setting events.

» Execute program.

» Display measurement result.

» Clear measurement result.

B Setting Event Mode
Set the event mode to the performance mode using the SET MODE command. This enables the performance
measurement function.
[Example]
>SET MODE/ PERFORMANCE
>
B Setting Minimum Measurement Unit for Timer

Using the SET TIMESCALE command, choose either 1 us or 100 ns as the minimum measurement unit for
the timer used to measure performance. The default is 1 us.

When the minimum measurement unit is changed, the performance measurement values are cleared.
[Example]

>SET TI MERSCALE/ 1U <- Set 1 us as mnimmunit.

>

B Specify Performance-Buffer-Full Break

When the buffer for storing performance measurement data becomes full, a executing program can be
broken. This function is called the performance-buffer-full break. The performance buffer becomes full when
an event occurs 32767 times.

If the performance-buffer-full break is not specified, the performance measurement ends, but the program
does not break.

[Example]

>SET PERFORMANCE/ NOBREAK <- Specifying Not Break
>

123

CHAPTER 2 DEPENDENCE FUNCTIONS

B Setting Events
Set events using the SET EVENT command.
The starting/ending point of time measurement and points to measure pass count are specified by events.

Events at 8 points (1 to 8) can be set. However, in the performance measurement, the intervals, starting event
number and ending event number are fixed in the following combination.

- Measuring Time

Four intervals have the following fixed event number combination.

Interval Starting Event Number Ending Event Number
1 1 2
2 3 4
3 5 6
4 7 8

- Measuring Count
The specified events become performance measurement points automatically.
B Executing Program

Start measuring when executing a program by using the GO or CALL command. If a break occurs during
interval time measurement, the data for this specific interval is discarded.

B Displaying Performance Measurement Data
Display performance measurement data by using the SHOW PERFORMANCE command.
B Clearing Performance Measurement Data
Clear performance measurement data by using the CLEAR PERFORMANCE command.
[Example]

>CLEAR PERFORMANCE
>

124

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.9.2 Display Performance Measurement Data

Display the measured time and measuring count by using the SHOW PERFORMANCE
command.

B Displaying Measured Time
To display the time measured, specify the starting event number or the ending event number.

Event number Count of measuring within given time interval
>SHOW PERRCRVANCE/ TI ME 1, 9000, 18999, 1000 \\
Minimum
execution time \event =1->2 time (ps) | count
mntinme = 11637.0 ceeeeeeee e R
Maximum byrax time = 17745.0 0.0 - 8999.0 | 0
execution time | .y time = 14538.0 9000. 0 9999.0 | 0
Average b .0 - 10999.0 | 0
execution time -0 - 11999.0 | 2
.0 - 12999.0 | 19
.0 - 13999. 0 | 52
.0 - 14999. 0 | 283
.0 - 15999.0 | 92
.0 - 16999.0 | 3
.0 - 17999.0 | 1
Total measuring count .0 - 18999.0 | 0
0 - | 0
_____________________________ Fememee -
total | 452

The lower time limit, upper time limit and display interval can be specified. The specified time value isin
1us, when the minimum measurement unit timer is set to 1 us by the SET TIMESCALE command, and in
100 ns when the minimum is set to 100 ns.

>SHOW PERFORMANCE/ TI ME 1, 13000, 16999, 500

event =1->2 time (us) | count
mntime = 11637.0 - -----miom oo e
mex time = 17745.0 0.0 - 12999.0 | 21
avr tine = 14538.0 13000.0 - 13499.0 | 13
/ 13500. 0 - 13999.0 | 39
Lower time limit for display 14000.0 - 14499.0 | 121
14500.0 - 14999.0 | 162
15000.0 - 15499.0 | 76
15500. 0 - 15999.0 | 16
Upper time limit for display 16000.0 - 16499.0 | 2
16500.0 - 16999.0 | 1
17000.0 - 17499.0 | 1
_____________________________ P,
tot al [452

125

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.10

Measuring Coverage

This emulator has the CO coverage measurement function. Use this function to find what
percentage of an entire program has been executed.

B Coverage Measurement Function

When testing a program, the program is executed with various test data input and the results are checked for
correctness. When the test is finished, every part of the entire program should have been executed. If any part
has not been executed, there is a possibility that the test isinsufficient.

This emulator coverage function is used to find what percentage of the whole program has been executed. In
addition, details such as which addresses were not accessed can be checked.

This enables the measurement coverage range to be set and the access attributes to be measured.

To execute the CO coverage, set a range within the code area and set the attribute to Code attribute. In
addition, specifying the Read/Write attribute and setting a range in the data area, permits checking the access
status of variables such as finding unused variables, etc.

Execution of coverage measurement is limited to the address space specified as the debug area.

Therefore, set the debug area in advance. However, the measurement attribute for coverage measurement can
be specified regardless of attributes of the debug area.

B Coverage Measurement Procedures

The procedure for coverage measurement is as follows:
- Set range for coverage measurement: SET COVERAGE
- Measuring coverage: GO, STEP, CALL
- Displaying measurement result: SHOW COVERAGE

B Coverage Measurement Operation

The following operation can be made in coverage measurement:

- Load/Save of coverage data: LOAD/COVERAGE, SAVE/COVERAGE

- Abortion and resume of coverage measurement: ENABLE COVERAGE, DISABLE COVERAGE
- Clearing coverage data: CLEAR COVERAGE

- Canceling coverage measurement range: CANCEL COVERAGE

Note:

With MB2141 emulator, the code coverage is affected by a prefetch by the MCU. Note the prefetch
when using the COVERAGE function.

126

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.10.1 Coverage Measurement Procedures

The procedure for coverage measurement is as follows:

» Set range for coverage measurement : SET COVERAGE

* Measure coverage : GO, STEP, CALL

» Display measurement result : SHOW COVERAGE

B Setting Range for Coverage Measurement
Use the SET COVERAGE command to set the measurement range. The measurement range can be set only
within the area defined as the debug area. Up to 32 ranges can be specified.

In addition, the access attribute for measurement can be specified. This attribute can be specified regardiess
of the attributes of the debug area.

By specifying /AUTOMATIC for the command qualifier, the code area for the loaded module is set
automatically. However, the library code areais not set when the C compiler library is linked.

[Example]

>SET COVERAGE FF0000 .. FFFFFF

B Measuring Coverage
When preparing for coverage measurement, execute the program.

Measurement starts when the program is executed by using the GO, STEP, or CALL command.

B Displaying Coverage Measurement Result
To display the coverage measurement result, use the SHOW COVERAGE command. The following can be
displayed:

Display coverage rate of total measurement area

Displaying coverage rate of load module

Summary of 16 addresses as one block

Detailsindicating access status of each address

Displaying coverage measurement result per source line
Displaying coverage measurement result per machine instruction

@ Displaying coverage rate of total measurement area (specify /TOTAL for the command qualifier)

>SHOW COVERAGE/ TOTAL

total coverage: 82.3%

127

CHAPTER 2 DEPENDENCE FUNCTIONS

® Displaying coverage rate of load module (specify /MODULE for the command qualifier)

>SHOW COVERAGE/MODULE
sample.abs (84.03%)
+- startup.asm........... (90.43%)

+-sample.c (95.17%)
+-samp.C ... (100.00%)

Displays the load modules and the coverage rate of each module.

® Summary (Specify /GENERAL for command qualifier)

>SHOW COVERAGE/ GENERAL
(HEX) 0X0 +1X0 +2X0
e o Fommmee e
address 0123456789ABCDEF0123456789ABCDEF0123456 ... ABCDEF CO(%

32.0

FFO000 **3* F*\

Display the access status of every 16 addresses
: No access
1 to F: Display the number accessed in 16 addresses by the hexadecimal number.
* : Access all of the 16 addresses.

@ Details (Specify /IDETAIL for command qualifier)

Display one line of a
coverage rate

>SHOW COVERAGE/ DETAI L FF0000

address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F CO(%

FFO000 - - - - = - = - - -« - . - 100.0
FFO010 - - - - - = = = « =« - - - - - -100.0
FFO020 - - - 186
FFO030 - - - - - = = = « - - - - - -100.0
FFO040 - . - - - -« = = + « + o - - . . 937
FFO050 - - - - - = = = « « - - - - - -100.0
FF0060 0.0
FF0070 0.0
FF0080 0.0

Display the access status of every 1 address
- No access
- :Access

128

CHAPTER 2 DEPENDENCE FUNCTIONS

® Displays per source line (specify /SOURCE for the command qualifier)

>SHOW COVERAGE/SOURCE main

* 70:{
71: int i
72: struct table *value[16];
73:

* 74 for (i=0; i<16; i++)

* 75 valuel[i] = &target[i];
76:

* 77 sort_val(value, 16L);

Displays execution status of each source line.
: No executing

* Executing

Blank : Line which the code had not been generated or is outside
the scope of the coverage measurement

@ Displays per machine instruction (specify /INSTRUCTION for the command qualifier)

>SHOW COVERAGE/INSTRUCTION F9028F
sample.c$70 {

* F9028F \main:

* F9028F 0822 LINK #22

* F90291 4F01 PUSHW RWO
sample.c$74 for (i=0; i<16; i++)

. F90293 DO MOVN A#O

. F90294 CBFE MOVW @RW3-02,A
. F90296 BBFE MOVW A,@RW3-02
. F90298 3B1000 CMPW A#0010

. F9029B FB18 BGE F902B5
sample.c$75 valuel[i] = &target[i];

. F9029D BBFE MOVW A,@RW3-02
. F9029F 0C LSLW A

. F902A0 98 MOVW RWO,A

. F902A1 71F3DE MOVEA A @RW3-22
. F902A4 7700 ADDW RWO,A

. F902A6 4214 MOV A#l4

. F902A8 7833FE MULUW A @RW3-02

. 902AB 38A001 ADDW A#01A0

Displays execution status of each machine command line.
No executing

* Executing
Blank : Instruction outside the scope of the coverage measurement

129

CHAPTER 2 DEPENDENCE FUNCTIONS

Note:

With MB2141 emulator, the code coverage measurement is affected by a prefetch. Note when
analyzing.

130

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.11 Execution Time Measurement

This function measures the program execution time.

B Measurement ltems
M easures time between the start and stop of program execution.

Thetimer for measuring time is called the emulation timer.

The measurement time depends on as follows by the minimum measurement unit for the emulation timer.

When the minimum measurement unit is1 us: the maximum is about 70 minutes

When the minimum measurement unit is 100 ns: the maximum is about 7 minutes

The minimum measurement unit at startup is 1 us.

The measurement is performed whenever a program is executed, and the measurement result displays the
following two values:

Number of cycles spent on the previous program execution
Total number of cycles executed since the previous clearing

B Setting the Minimum Measurement Unit
Either of the following methods can be used to set the minimum measurement unit for the emulation timer.

Set by dialog
Select [Setup] - [Debug Environment] - [Debug Environment] menu to set the resultsin [emulation] tab in
the debugging environment set dialog.

For details, refer to Section "4.7.2.3 Setting Debug Environment" in "SOFTUNE Workbench Operation
Manual".

Set by command
Enter the SET TIMERSCALE command in the command window.

For details, refer to Section "1.13 SET TIMERSCALE" in "SOFTUNE Workbench Command Reference
Manual".

B Displaying Measurement Results
Either of the following methods can be used to display the measurement results.

Display by dialog
The results appear in the time measurement dialog, which can be displayed by selecting [Debug] - [Time
M easurement] menu.

For details, refer to Section "4.6.8 Time Measurement” in "SOFTUNE Workbench Operation Manual".
Display by command

Enter the SHOW TIMER command in the command window.

For detalls, refer to Section "4.27 SHOW TIMER" in " SOFTUNE Workbench Command Reference Manua™.

B Clearing Measurement Results
Either of the following methods can be used to clear the measurement results.

131

CHAPTER 2 DEPENDENCE FUNCTIONS

e Clearing by dialog

Click the [Clear] button in the time measurement dialog, which can be displayed by selecting [Debug] -
[Time Measurement] menu.

For details, refer to Section "4.6.8 Time Measurement” in "SOFTUNE Workbench Operation Manual".
¢ Clearing by command

Enter the CLEAR TIMER command in the command window.

For details, refer to Section "4.28 CLEAR TIMER" in " SOFTUNE Workbench Command Reference Manua™.

Note:

The measured execution time is added about ten extra cycles per execution. If the execution cycle is
measured, execute many instructions continuously in order to minimize the effect of error.

132

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.12 Sampling by External Probe

An external probe can be used to sample (input) data. There are two sampling types:
sampling the trace buffer as trace data, and sampling using the SHOW SAMPLING
command.

B Sampling by External Probe

There are two sampling types to sample data using an external probe: sampling the trace buffer as trace data,
and sampling using the SHOW SAMPLING command.

When data is sampled as trace data, such data can be displayed by using the SHOW TRACE command or
SHOW MULTITRACE command, just as with other trace data. Sampling using the SHOW SAMPLING
command, samples data and displays its state.

In addition, by specifying external probe data as events, such events can be used for aborting a program, and
as multi trace and performance trigger points.

Events can be set by using the SET EVENT command.
B External Probe Sampling Timing
Choose one of the following for the sampling timing while executing a program.
- Atrising edge of internal clock (clock supplied by emulator)
- Atrising edge of externa clock (clock input from target)
- At falling edge of external clock (clock input from target)

Use the SET SAMPLING command to set up; to display the setup status use the SHOW SAMPLING
command.

When sampling data using the SHOW SAMPLING command, sampling is performed when the command is
executed and has nothing to do with the above settings.
[Example]

>>SET SAMPLI NG | NTERNAL

>>SHOW SAMPLI NG

sanpling timng : internal

channel 76543210

11110111

133

CHAPTER 2 DEPENDENCE FUNCTIONS

W Displaying and Setting External Probe Data

When a command that can use external probe data is executed, external probe data is displayed in 8-digit
binary or 2-digit hexadecimal format. The displayed bit order is in the order of the IC clip cable color code
order (Table 2.2-12). The MSB is at bit7 (Violet), and the LSB is at bitO (Black). The bit represented by 1
means HIGH, while the bit represented by 0 means LOW. When data is input as command parameters, these
values are also used for input.

Table 2.2-12 Bit Order of External Probe Data

IC Clip Violet Blue Green | Yellow | Orange Red Brown Black
Cable Color
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Bit Order
External probe data

B Commands for External Probe Data

134

Table 2.2-13 shows the commands that can be used to set or display externa probe data.

Table 2.2-13 Commands that can be used External Probe Data

Usable Command Function
SET SAMPLING Sets sampling timing for external probe
SHOW SAMPLING Samples externa probe data
SET EVENT Enables to specify external probe data as condition for event
SHOW EVENT Displays event setup status
SHOW TRACE Displays external probe trace-sampled (single trace)
SHOW MULTITRACE Displays external probe trace-sampled (multi-trace)

CHAPTER 2 DEPENDENCE FUNCTIONS

2.2.13 Checking Debugger Information

This section explains how to check information about the MB2141 emulator debugger.

B Debugger Information
This emulator debugger enables you to check the following information at startup.

* SOFTUNE Workbench file information

e Hardware information

If any errors have been discovered during SOFTUNE Workbench operations, check this information and
contact our sales department or support department.

B How to Check
Use one of the following methods to check debugger information.

e Command
- SHOW SYSTEM
Refer to Section "1.19 SHOW SYSTEM" in "SOFTUNE Workbench Command Reference Manua .
« Didog
- Version information dialog
Select [Help] - [Version Information] menu.
For details, refer to Section "4.9.3 Version Information” in "SOFTUNE Workbench Operation
Manual".

B Displayed Contents
F2MC- 16 Fami |y SOFTUNE Wor kbench VxxLxx
ALL RI GHTS RESERVED,
COPYRI GHT(C) FUJI TSU SEM CONDUCTOR LI M TED 1997
LI CENCED MATERI AL -
PROGRAM PROPERTY OF FUJI TSU SEM CONDUCTOR LI M TED

Cpu information file path: CPU information file path
Cpu information file version: CPU information file version

Add in DLLs
Si Cm
Product nane: SOFTUNE Wbr kbench
File Path: SiC907.dll path
Version: SiC907.dll version
SiiEd
File Path: SiiEd3.ocx path
Version: SiiEd3.ocx version
Si MB07
Product nanme: SOFTUNE Wr kbench
File Path: SiM07.dll path
Version: SiMBO7.dll version

135

CHAPTER 2 DEPENDENCE FUNCTIONS

Language Tool s

- F2MC-16 Family SOFTUNE C Conpil er version
File Path: fcc907s.exe path

- F2MC-16 Family SOFTUNE Assenbl er version
File Path: fasnb07s.exe path

- F2MC-16 Family SOFTUNE Linker version
File Path: flnk907s.exe path

- F2MC-16 Family SOFTUNE Librarian version
File Path: flib907s.exe path

- SOFTUNE FJ-OVF to S-FORVAT Converter version
File Path: f2ms.exe path

- SOFTUNE FJ-OVF to | NTEL-HEX Converter version
File Path: f2is.exe path

- SOFTUNE FJ- OVWF to | NTEL- EXT-HEX Converter version
File Path: f2es.exe path

- SOFTUNE FJ-OVF to HEX Converter version
File Path: f2hs.exe path

Si GsM

Product nane: Softune Workbench
File Path: Si GsMB07.dll| path
Version: Si GsMB07.dl | version

F2MC- 16 Series Debugger DLL
Product nanme: SOFTUNE Wor kbench
File Path: SiDO07.dll path
Version: SiD907.dll version

Debugger type Current debugger type

MCU type

VCpu dl |l nane

VCpu dl | version
DSU type

Moni t or version
Conmuni cati on device
Baud rate

Host nane

REALCS ver si on

Si | ODef

Currently selected target MCU

Path and nane of the currently used VCpu dl|
Version of the currently used virtual debugger
Currently used DSU type

Version of nonitor (dependent)

Devi ce type

Baud rate

LAN host nane

REALGCS ver si on

Product nane: Softune Wor kbench
File Path: SilODef.dll path

Version: SilQDef.dll

ver si on

Current path: Path of the currently used project
Language: Currently used | anguage
Help file path: Help file path

136

DLL

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3 Emulator Debugger (MB2147-01)

This section explains the functions of the emulator debuggers for the MB2147-01.

B Emulator

When choosing the emulator debugger from the setup wizard, select one of the following emulators. The
following description explains the case when MB2147-01 has been sel ected.

MB2141
MB2147-01
MB2147-05
MB2198

The emulator debugger for the MB2147-01 is software that controls an emulator from a host computer via a
communications line (RS-232C, LAN or USB) to evaluate programs.

The following series can be debugged:
F2MC-16L
F2MC-16LX

Before using the emulator, the emulator must be initialized. For details, refer to "Appendix B Monitoring
Program Download" and "Appendix C LAN Interface Setup” of "SOFTUNE Workbench Operation Manua".

137

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.1 Setting Operating Environment

This section explains the operating environment setup.

B Setting Operating Environment

For the emulator debugger for the MB2147-01, it is necessary to set the following operating environment.
Predefined default settings for al these setup items are enabled at startup. Therefore, setup is not required
when using the default settings. Adjusted settings can be used as new default settings from the next time.

- Monitoring program automatic loading
- MCU operation mode

- Debug area

- Memory mapping

- Debug function

- BEvent mode

138

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.1.1 Monitoring Program Automatic Loading

The MB2147-01 emulator can automatically update the monitoring program at emulator
startup.

B Setting Monitoring Program Automatic Loading

When the MB2147-01 emulator is specified, data in the emulator can be checked at the beginning of

debugging to load an appropriate monitoring program and configuration binary data automatically into the
emulator.

The monitoring program and configuration binary data to be compared for update are in Lib\907 under the
directory where Workbench isinstalled.

Enable/disable the monitoring program automatic loading function by choosing [Environment] - [Debug
Environment Setup] - [Setup Wizard] menu.

139

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.1.2 MCU Operation Mode

There are two MCU operation modes as follows:
* Debugging Mode
* Native Mode

B Setting MCU Operation Mode
Set the MCU operation mode.
There are two operation modes. the debugging mode, and the native mode.
Choose either one using the SET RUNMODE command.
At emulator start-up, the MCU isin the debugging mode.

The data access to internal bus may not be detected by emulator in native mode. Therefore, when the MCU
operation mode is changed, al the following are initialized:

Data breakpoints
Data monitoring break

Event condition settings
- Sequencer settings
Trace measurement settings and trace buffer

B Debugging Mode
All the operations of evaluation chips can be analyzed, but their operating speed is slower than that of mass-
produced chips.

B Native Mode

Evaluation chips have the same timing as mass-produced chips to control the operating speed. Note that the
restrictions the shown in Table 2.3-1 are imposed on the debug functions.

Table 2.3-1 Restrictions on Debug Functions in Native Mode

Applicable series Restrictions on debug functions

Common to all series - When adataread access occurs on the MCU internal bus, the internal bus
access information is not sampled and stored in the trace buffer.

- Even when adata break or event (data access condition) is set for data on the
MCU internal bus, it may not become a break factor or sequencer-triggering
factor.

- The coverage function may fail to detect an access to data on the MCU
internal bus.

140

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.1.3 Debug Area

Set the intensive debugging area out of the whole memory space. The area functions are
enhanced.

B Setting Debug Area
There are two debug areas: DEBUG3, and DEBUGA4. A continuous 1 MB area (16 banks) is set for each area.
Set the debug area using the SET DEBUG command.
Setting the debug area enhances the coverage measurement function.
- Enhancement of Coverage M easurement Function

Setting the debug area enables the coverage measurement function. In coverage measurement, the
measurement range can be specified only within the area specified as the debug area. In 00 to OF bank and
OFO to OFF bank, a breakpoint can be set without specifying the debug area. (DEBUGL1, DEBUG2)

141

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.1.4

Memory Area Types

A unit in which memory is allocated is called an area. There are five different area types.

B Memory Area Types

A unit to allocate memory is allocated is called an area. There are five different area types as follows:

- User Memory Area

Memory space in the user system is called the user memory area and this memory is called the user
memory. Up to four user memory areas can be set with no limit on the size of each area. Define aregion
on a 256-byte boundary.

Access attributes can be set for each area; for example, CODE, READ, etc., can be set for ROM area, and
READ, WRITE, etc. can be set for RAM area. If the MCU attempts access in violation of these attributes,
the MCU operation is suspended and an error is displayed (guarded access break).

Memory manipulation commands can be executed in relation to emulation memory areas while MCU
execution isin progress.

To set the user memory area, use the SET MAP command.

- Emulation Memory Area

Memory space substituted for emulator memory is called the emulation memory area, and this memory is
called emulation memory.

It is possible to set up to four areas of 1 MB maximum (including an internal ROM area described later)
as emulation memory area. Define a region on a 256-byte boundary. An area larger than 1 MB can be
specified at one time but is divided internally into two or more 1 MB areas for management purposes.

Memory manipulation commands can be executed in relation to emulation memory areas while MCU
execution isin progress.

Emulation memory areas can be set using the SET MAP command.
Further, the access attributes can be set as with user memory areas.

Note:

Even if the MCU internal resources are set as emulation memory area, access is made to the internal
resources. Re-executing this setup may damage data.

142

- Internal ROM Area

The area where the emulator internal memory is substituted for internal ROM is called the internal ROM
area, and this memory is called the internal ROM memory.

Theinternal ROM areawith asize up to 1 MB can be specified two aress.

An area larger than 1 MB can be specified at one time but is divided internally into two or more 1 MB
areas for management purposes.

Memory manipulation commands can be executed in relation to emulation memory areas while MCU
execution isin progress.

Theinternal ROM area is capable to set by the "Setup Map" dialog opening by "Debugger Memory Map"
from "Setup”.

CHAPTER 2 DEPENDENCE FUNCTIONS

Note:
The internal memory area, it is set a suitable area automatically by the selected MCU.

- Internal ROM Image Area

Some types of MCUSs have data in a specific area of internal ROM appearing to 00 bank. This specific
areais called the internal ROM image area.

The internal ROM image area is capable to set by the "Setup Map" dialog opening by "Debugger Memory
Map" from "Setup". This area attribute is automatically set to READ/CODE. The same data as in the
internal ROM area appearsin the internal ROM image area.

Note that the debug information is only enabled for either one (one specified when linked). To debug only
the internal ROM image area, change the creation type of the load module file.

Note:
The internal memory area, it is set a suitable area automatically by the selected MCU.

- Undefined Area
A memory area that does not belong to any of the areas described above is part of the user memory area.
Thisareais specifically called the undefined area.

The undefined area can be set to either NOGUARD area, which can be accessed freely, or GUARD area,
which cannot be accessed. Select either setup for the whole undefined area. If the area attribute is set to
GUARD, aguarded access error occurs if accessto this areais attempted.

143

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.1.5

Memory Mapping

Memory space can be allocated to the user memory and the emulation memory, etc., and
the attributes of these areas can be specified.

However, the MCU internal resources are not dependent on this mapping setup and
access is always made to the internal resources.

B Access Attributes for Memory Areas

144

The access attributes shown in Table 2.3-2 can be specified for memory areas.

A guarded access break occurs if access is attempted in violation of these attributes while executing a
program.

When access to the user memory area and the emulation memory area is made using program commands,
such access is allowed regardless of the CODE, READ, WRITE attributes. However, access to memory with
the GUARD attribute in the undefined area, causes an error.

Table 2.3-2 Types of Access Attributes

Area Attribute Description
User Memory CODE Instruction Execution Enabled
Emulation Memory
READ Data Read Enabled
WRITE Data Write Enabled
Undefined GUARD Access Disabled

NOGUARD No check of access attribute

When access is made to an area without the WRITE attribute by executing a program, a guarded access break
occurs after the data has been rewritten if the access target is the user memory. However, if the access target
is the emulation memory, the break occurs before rewriting. In other words, write-protection (memory data
cannot be overwritten by writing) can be set for the emulation memory area by not specifying the WRITE
attribute for the area.

This write-protection is only enabled for access made by executing a program, and is not applicable to access
by commands.

CHAPTER 2 DEPENDENCE FUNCTIONS

B Creating and Viewing Memory Map
Use the following commands for memory mapping.

SET MAP: Set memory map.
SHOW MAP: Display memory map.
CANCEL MAP: Change memory map setting to undefined.
[Examplé]
>SHOW VAP
addr ess attribute type
000000 .. FFFFFF noguar d
The rest of setting area nunbers
user = 8 enul ation = 5

>SET MAP/ USER H 0. .H 1FF

>SET MAP/ READ/ CODE/ EMULATI ON H FF0000. . H FFFFFF
>SET MAP/ USER H 8000. . H 8FFF

>SET MAP/ M RROR/ COPY H 8000. . H 8FFF

>SET MAP/ GUARD

>SHOW MAP
addr ess attribute type
000000 .. OOO1FF read wite user
000200 .. OO7FFF guard
008000 .. OO8FFF read wite user
009000 .. FEFFFF guard

FFO000 .. FFFFFF read wite code enul ation
mrror address area
008000 .. OO8FFF copy
The rest of setting area nunbers
user = 6 enulation = 3

>

B Internal ROM Area Setting
The [Setup Map] dialog box is displayed using [Environment] - [Memory Map] menu. You can set the
internal ROM area using the [Internal ROM Ared] tab after the [Map Adding] dialog box is displayed by
clicking on the [Setting] button. Y ou can set two areas. Both require empty Emulation area to be set. You can
set the region size by (Empty space of the emulation area) x (one area size).
Specify the internal ROM area from the ending address H'FFFFFF (fixed) for area 1. Also, it is possible to
delete the internal ROM area.

145

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.1.6 Debug Function

The debug function has the following two types. Only the function of the selected mode
can be used. The selectable debug mode depends on the emulator or its connection
form.

* RAM Checker mode

» Trace Enhancement mode

B Setting of Debug Function
Set the debug function. The debug function has the RAM Checker and the Trace Enhancement mode. The
selectable mode depends on the emulator or its connection form. These modes can be set by using [Setup] -
[Debug Environment] - [Select Debug Function] menu or the SET MODE command on the command
window.

At the emulator activated, thisis set to the RAM Checker mode.
When the debug function is changed, al the followings are initialized:
» Performance measurement data
e Tracebuffer
B RAM Checker mode
Enables the RAM Checker function. The history of accessing the monitoring addresses can be recorded into
thelog file.
B Trace Enhancement mode
Enabl e the trace enhancement.
The following functions become available.

1. Trace acquisition in the multi trace mode

2. Trace acquisition control by trace trigger (resumption/pausing/termination)
3. Trace control by data monitoring condition

4. Trace control by sequencer

146

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.1.7 Event Mode

There are three event modes as listed below.
 Normal mode

e Multi trace mode

e Performance mode

B Event Mode
Event mode is used to determine which function the event triggers are used for. To set the mode, use [Event]
tab on [Setup] - [Debug Environment] - [Debug Environment] menu or the SET MODE command on the
command window. The default is normal mode.
There are three event modes as listed below.

* Normal mode
Event triggers are used for the single trace.
e Multi trace mode

Event triggers are used for the multi trace (trace function which samples data before and after the event
trigger occurred).

* Performance mode

Event triggers are used for the performance measurement. It enables to measure time duration between
two event trigger occurrence and count of event trigger occurrence.

Note:

The multi trace mode can be specified only when the debug function on MB2147-01 is set to Trace
Enhancement mode. For more details, see Section "2.3.1.6 Debug Function".

147

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.2 Notes on Commands for Executing Program

When using commands to execute a program, there are several points to note.

Bl Notes on GO Command

For the GO command, two breakpoints that are valid only while executing commands can be set. However,
care isrequired in setting these breakpoints.

- Invalid Breakpoints

- No break occurs when a breakpoint is set at the instruction immediately after the following instructions.

FZMC-16L/16L X

PCB

NCC

SPB

MOV ILM,#imm8
OR CCR#imm8

DTB

ADB

CNR
ANDCCR,#mm8
POPW PS

- No break occurs when breakpoint set at address other than starting address of instruction.

- No break occurs when both following conditions met at one time.
- Instruction for which breakpoint set starts from odd-address,

- Preceding instruction longer than 2 bytes length, and breakpoint already set at last 1-byte address of
preceding instruction (This "already-set" breakpoint is an invalid breakpoint that won't break, because
it has been set at an address other than the starting address of an instruction).

- Abnormal Breakpoint

Setting a breakpoint at the instruction immediately after string instructions listed below, may cause a
break in the middle of the string instruction without executing the instruction to the end.

FZMC-16L/16L X

MOVS
SECQ
WBTS
MOVSWI
SECQWI
MOVSD
SECQD
FILS
FILSW

MOV SwW
SECQW
MOVS
SECQI
WBTC
MOVSWD
SECQWD
FILSI
FILSWI

148

CHAPTER 2 DEPENDENCE FUNCTIONS

Bl Notes on STEP Command
- Exceptional Step Execution

When executing the instructions listed in the notes on the GO command as invalid breakpoints and
abnormal breakpoints, such instructions and the next instruction are executed as a single instruction.
Furthermore, if such instructions are continuous, then all these continuous instructions and the next
instruction are executed as a single instruction.

- Step Execution that won't Break
Note that no break occurs after step operation when both the following conditions are met at one time.
- When step instruction longer than 2 bytes and |ast code ends at even address
- When breakpoint already set at last address (This "already-set" breakpoint is an invalid breakpoint that
won't break, because it has been set at an address other than the starting address of an instruction.)
B Controlling Watchdog Timer

It is possible to select "No reset generated by watchdog timer counter overflow" while executing a program
using the GO, STEP, CALL commands.

Use the ENABLE WATCHDOG, DISABLE WATCHDOG commands to control the watchdog timer.

- ENABLE WATCHDOG : Reset generated by watchdog timer counter overflow
- DISABLEWATCHDOG : No reset generated by watchdog timer counter overflow
The start-up default in this program is "Reset generated by watchdog timer counter overflow".
[Example]
>DI SABLE WATCHDOG
>G0

149

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.3

Commands Available during Execution of User Program

This section explains the commands available during the execution of a user program.

B Commands Available during Execution of User Program
This emulator debugger allows you to use certain commands during the execution of a user program.

For more details, see "l Debugger” in "SOFTUNE Workbench Command Reference Manual”.

The double circle indicates that it is available during the execution of a user program.

Table 2.3-3 shows the commands availabl e during the execution of a user program.

Table 2.3-3 Commands Available during Execution of User Program (1/ 2)

Function

Restrictions

Major Commands

MCU reset

1.3 RESET

Displaying trace data

Enabled only when trace execution
ended *1
Enabled only when the debug function is

in "Trace Enhancement” mode."?
(only MULTITRACE)

4.2 SHOW MULTITRACE,
4.31 SHOW TRACE(type 1)

Clear trace data

Enabled only when trace execution
ended !
Enabled only when the debug function is

in "Trace Enhancement” mode."?
(only MULTITRACE)

4.3 CLEAR MULTITRACE,
4.34 CLEAR TRACE

Search trace data

Enabled only when trace execution
ended !
Enabled only when the debug function is

in "Trace Enhancement” mode."?
(only MULTITRACE)

4.6 SEARCH MULTITRACE,
4.37 SEARCH TRACE

Set trace acquisition data

Enabled only when trace execution ended "1

4.35 ENABLE TRACE,
4.36 DISABLE TRACE

Set trace trigger

1

Enabled only when trace execution
ended "*

Enabled only when the debug function is
in "Trace Enhancement” mode."2

4.42 SET TRACETRIGGER,
4.43 SHOW TRACETRIGGER,
4.44 CANCEL TRACETRIGGER

Set filtering area

Enabled only when trace execution
ended "*

Enabled only when the debug function is
in "Trace Enhancement” mode."2

4.38 SET DATATRACEAREA,
4.40 SHOW DATATRACEAREA,
4.41 CANCEL DATATRACEAREA

150

CHAPTER 2 DEPENDENCE FUNCTIONS

Table 2.3-3 Commands Available during Execution of User Program (2 / 2)

Function

Restrictions

Major Commands

Set trace delay

1. Enabled only when trace execution
ended "*

2. Enabled only when the debug function is
in " Trace Enhancement” mode."?

4.45 SET DELAY,
4.46 SHOW DELAY

Displaying execution cycle
measurement value (Timer)

4.27 SHOW TIMER

Memory operation (Read/Write)

Emulation memory only operable *3
Read only enabled in real-time monitoring
area

5.1 EXAMINE,

5.2 ENTER,

5.3 SET MEMORY,

5.4 SHOW MEMORY,
5.5 SEARCH MEMORY,
5.8 COMPARE,
S9FILL,

5.10 MOVE,

5.11 DUMP

Line assembly, Disassembly

Emulation memory only enabled *3
Real-time monitoring area, Disassembly
only enabled

6.1 ASSEMBLE
6.2 DISASSEMBLE

Breakpoint Settings

Oprable only when "Breakpoint Settings
during Execution” is enabled in the
execution tab of the debug environment
dialog.

3.1 SET BREAK,

3.6 CANCEL BREAK,

3.7 ENABLE BREAK,

3.8 DISABLE BREAK,

3.9 SET DATABREAK,

3.12 CANCEL DATABREAK,
3.13 ENABLE DATABREAK,
3.14 DISABLE DATABREAK

*1: For detail, refer to Section "2.3.6 Real-time Trace".
*2: For detail, refer to Section "2.3.1.6 Debug Function”.
*3: For detail, refer to Section "2.2.1.4 Memory Mapping".
*4: For detail, refer to Section "2.3.4 Break".

Notes:

e The conditions which allow you to use the commands in Table 2.3-3 are limited to the following

cases when a user program is executed.
- [Debug] - [Run] - [Go] menu
- [Go] button on the debug toolbar

The commands in Table 2.3-3 cannot be used when the GO command is entered in the command

window.

« An error message appears if you enter a command that cannot be used during the execution of a

user program.

"E4404S Command error (MCU is busy)."

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.4 Break

In this emulator debugger, nine types of break functions can be used. When the program
execution is aborted by each break function, the address and the break factor to do the
break are displayed.

B Break Functions
In this emulator debugger, nine types of break functions are supported.
e Code break
e Databreak
« Monitoring data break
* Seguentia break
e Guarded access break
» Trace-buffer-full break
» Performance-buffer-full break
« Externd trigger break
» Forced break

152

CHAPTER 2 DEPENDENCE FUNCTIONS

2.34.1 Code Break

It is a function to abort the program by observing the specified address. The break is
done before an instruction the specified address is executed.

Bl Code Break

It is a function to abort the program by observing the specified address. The break is done before an
instruction the specified address is executed. It is possible to set it in this 65535 debuggers.

When a break occurs due to a code break, the following message is displayed on the Status Bar.
Break at Address by breakpoint
B Setting Method
The code break is controlled by the following method.
e Command

- SET BREAK
Refer to "3.1 SET BREAK (type 1)" in "SOFTUNE Workbench Command Reference Manual”.

- Diaog
- Breakpoints set dialog [Code] tab
Refer to "4.6.4 Breakpoint” in "SOFTUNE Workbench Operation Manual".

e Window
- Source window/Disassembly window
B Notes on Data Break
There are several pointsto note in using code break. First, some points affecting code break are explained.

@® Invalid Breakpoints

* No break occurs when a breakpoint is set at the instruction immediately after the following instructions.

F’MC-16/16L/16LX/16H: «PCB +DTB +NCC *ADB +SPB «CNR
* MOV ILM#mm8 «AND CCR#mm8
*OR CCR#mm8 e« POPW PS
F2M C-16F; *«PCB «DTB *NCC <«ADB +SPB <CNR
» No break occurs when breakpoint set at address other than starting address of instruction.
« No break occurs when both following conditions met at one time.
- Instruction for which breakpoint set starts from odd-address
- Preceding instruction longer than 2 bytes length, and breakpoint already set at last 1-byte address of

preceding instruction (This "already-set" breakpoint is an invalid breakpoint that won't break, because
it has been set at an address other than the starting address of an instruction.)

153

CHAPTER 2 DEPENDENCE FUNCTIONS

® Abnormal Breakpoint

Setting a breakpoint at the instruction immediately after string instructions listed below, may cause a
break in the middle of the string instruction without executing the instruction to the end.

F°MC-16/16L/16LX/16H: +MOVS «MOVSW * SECQ * SECQW * WBTS
*MOVSI +MOVSWI «SECQI * SECQWI * WBTC
*MOVSD +MOVSWD +SECQD «SECQWD
*FILS *FILS * FILSW * FILSWI

F°MC-16F: Above plus « MOVM «MOVMW

Here are some additional points about the effects on other commands.

@® Dangerous Breakpoints

* Never set a breakpoint at an address other than the instruction starting address. If a breakpoint isthe last 1
byte of an instruction longer than 2 bytes length, and if such an address is even, the following abnormal
operation will result:

- If instruction executed by STEP command, instruction execution not aborted.

- If breakpoint specified with GO command, set at instruction immediately after such instruction, the
breakpoint does not break.

Note:

When the debugging area is set again, all breakpoints in the area are cleared.

154

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.4.2 Data Break

The data break is a function to abort the program execution when the data access (read
or write) is done to the address specified while executing the program.

B Data Break
The data break is a function to abort the program execution when MCU accesses data as for a specified
address. It is possible to set it in thistwo debuggers.
When a break occurs due to a data break, the following message is displayed on the Status Bar.
Break at Address by databreak at Access address
B Setting Method
The data break is controlled by the following method.
e Command
- SET DATABREAK
Refer t0 "3.9 SET DATABREAK (type 1)" in "SOFTUNE Workbench Command Reference Manua".
- Diaog
- Breakpoints set dialog [Data] tab
Refer to "4.6.4 Breakpoint” in "SOFTUNE Workbench Operation Manual".

Note:
When the debugging area is set again, all breakpoints in the area are cleared.

155

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.4.3 Monitoring Data Break

It is a special break function to abort execution while it is corresponding to specified
data when the program reaches a specified address.

B Monitoring Data Break

It is a specia break function to abort execution while it is corresponding to specified data when the program
reaches a specified address.

If the break condition of the data watch break is shown in figure, it becomes as shown in the figure below.

Flow of program Monitoring Data

Specified >
address Break does not occur
when data is not matching.

Data matchin
Specified > o
address

Break occurs when
data is matching.

\/

B Setting Number
The maximum constant and break conditions of monitoring data break vary as follows:
e Monitoring Data Break

Break conditions are set by address and data. Up to four points can be set. However, the break conditions
vary due to combination use with the " Sequencer” or the "Trace trigger".

B Setting Method
The data monitoring break can be set depending on the following command.
* Command
- SET BREAK/DATAWATCH
- Diaog
- Breakpoints set dialog [code] tab
"Hardware/Monitoring data’

156

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.4.4 Sequential Break

A sequential break is a function to abort a executing program, when the sequential
condition is met by event sequential control.

B Sequential Break
It is afunction to discontinue the program execution when the sequential condition consists by the sequential
control of the event. Use a sequential break when the event mode is set to normal mode using the SET
MODE command.
When a break occurs due to a sequential break, the following message is displayed on the Status Bar.
Break at Address by sequential break
For details of the sequential break function, refer to Section "2.3.5 Control by Sequencer".

B Setting Method
The sequential break is controlled by the following method.

1. Set event mode (SET MODE)
2. Set events (SET EVENT)
3. Set sequencer (SET SEQUENCE)

157

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.4.5

Guarded Access Break

The guarded access break is an abortion of the program execution that happens when
the violation to the set access attribute, doing the access, and guarded (An undefined
area cannot be accessed) area are accessed.

Bl Guarded Access Break

A guarded access break aborts a executing program when access is made in violation of the access attribute
set by using the [Setup] - [Memory Map] menu, and access is attempted to a guarded area (access-disabled
areain undefined areq).

There are three types of the following in Guarded access break.
Code guarded

When the instruction execution is done to the area without the code attribute, the break is done.
Read guarded

When the area without the read attribute is read, the break is done.
Write guarded

When the area without the write attribute is write, the break is done.

If a guarded access occurs while executing a program, the following message is displayed on the Status Bar
and the program is aborted.

Break at Address by guarded access { code/read/write} at Access address

Note:

Code Guarded is affected by pre-fetching.

The F2MC-16L/16LX/16/16H family pre-fetch up to 4 bytes. So, when setting the program area
mapping, set a little larger area (5 bytes max.) than the program area actually used.

Similarly, the F2MC-16F family pre-fetch up to 8 bytes. So, when setting the program area mapping,
set a little larger area (9 bytes max.) than the program area actually used.

158

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.4.6 Trace-Buffer-Full Break

It is a function to abort the program execution when the trace buffer becomes full.

B Trace-Buffer-Full Break

It isafunction to abort the program execution when the trace buffer becomes full.
When a break occurs due to atrace-buffer-full break, the following message is displayed on the Status Bar.
Break at Address by trace buffer full
B Setting Method
The trace-buffer-full break is controlled by the following method.

e Command
- SET TRACE/BREAK
Refer to "4.30 SET TRACE (type 2)" in "SOFTUNE Workbench Command Reference Manual".
- Diaog
- Trace Set Dialog
Refer to "4.4.8 Trace" in "SOFTUNE Workbench Operation Manual".

159

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.4.7 Performance-Buffer-Full Break

It is a function to abort the program execution when the buffer for the performance
measurement data storage becomes full.

B Performance-Buffer-Full Break
It isafunction to abort the program execution when the buffer for the performance measurement data storage
becomes full.

When a break occurs due to a performance-buffer-full break, the following message is displayed on the
Status Bar.
Break at Address by performance buffer full
B Setting Method
The performance-buffer-full break is controlled by the following method.
* Command
- SET PERFORMANCE/BREAK
Refer to "4.7 SET PERFORMANCE (type 1)" in "SOFTUNE Workbench Command Reference
Manual".
« Didog
- Performance set dialog
Refer to "4.4.13 Performance” in "SOFTUNE Workbench Operation Manual”.

160

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.4.8 External Trigger Break

It is a function to abort the execution of the program when an external signal is input
from TRIG pin that the emulator has.

B External Trigger Break
It isafunction to abort the execution of the program when an external signal is input from TRIG pin that the
emulator has.
When a break occurs due to an external trigger break, the following message is displayed on the Status Bar.
Break at Address by external trigger break
B Setting Method
The external trigger break is controlled by the following method.
e Command
- SET TRIGGER
Refer to "3.42 SET TRIGGER" in "SOFTUNE Workbench Command Reference Manual”.
- Diaog
- Debugging environment set dialog [emulation] tab
Refer to "4.7.2.3 Debug Environment" in "SOFTUNE Workbench Operation Manual”.

161

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.4.9 Forced Break

It is a function to abort the execution of the program compulsorily.

B Forced Break
It isafunction to abort the execution of the program compulsorily.
When a break occurs due to aforced break, the following message is displayed on the Status Bar.
Break at Address by command abort request

Note:

A forced break is not allowed while the MCU is in the low-power consumption mode or hold state.
When a forced break is requested by the [Debug] - [Abort] menu while executing a program, the menu
is disregarded if the MCU is in the low-power consumption mode or hold state. If a break must occur,
then reset the cause at user system side, or reset the cause by using the [Debug] - [Reset MCU]
menu, after inputting the [Debug] - [Abort] menu.

When the MCU enters the power-save consumption mode or hold state while executing, the status is
displayed on the Status Bar.

162

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.5 Control by Sequencer

This emulator has a sequencer to control events. By using this sequencer, sampling of
breaks or traces can be controlled while monitoring program flow (sequence). A break
caused by this function is called a sequential break.

B Control by Sequencer
As shown in Table 2.3-4, controls can be made at 3 different levels.
One event can be set for one level.

The sequencer always moves from Level 1 through Level 2 to Level 3. One event can be specified as a
sequencer restart condition.

When the debug function on MB2147-01 is set to Trace Enhancement mode, it is possible to control a trace
by a sequencer.

1. Complete the trace acquisition.
2. Transit to the next block (Only in multi trace mode)

Table 2.3-4 Sequencer Specifications

Function Specifications
Level count 3 levelst restart condition
Conditions settable for each level 1 event conditions (1 to 16777215 times pass count can be
specified for each condition.)
Restart conditions 1 event conditions (1 to 16777215 times pass count can be
specified.)

Operation when conditionsestablished | Branching to another level or terminating sequencer

163

CHAPTER 2 DEPENDENCE FUNCTIONS

B Setting Events

The emulator can monitor the MCU bus operation, and generate a trigger for a sequencer at a specified
condition. Thisfunction is called an event.

In the event, code (/CODE) and data access (/READ/WRITE) can be specified.

Up to eight events can be set. However, since hardware is shared with trace triggers, the actual numbers is
calculated asfollows.

Current maximum constant of events
= 8 - (current number of trace trigger settings + current number of data monitoring break settings)

Table 2.3-5 shows the conditions that can be set for events.

Table 2.3-5 Conditions for Event and Trace Trigger

Condition Description
Address Memory location (address bit masking disabled)
Data 16-bit data (data bit masking enabled)
Accesssize Byte, word
Status Select from code, data read or data write

Note:

In instruction execution (/CODE), an event trigger is generated only when an instruction is executed.
This cannot be specified concurrently with other status (/READ or /WRITE).

Use the following commands to set an event.
SET EVENT : Sets an event
SHOW EVENT : Displays the status of event setting
CANCEL EVENT : Deletes an event
[Examplé]
>SET EVENT/ CODE funcl
>SET EVENT/WRI TE data[2], !d=h'10
>SET EVENT/ READ) VRI TE 102

164

CHAPTER 2 DEPENDENCE FUNCTIONS

2.35.1 Setting Sequencer

The sequencer operates in the following order:

1) The sequencer starts after the program execution.

2) Depending on the setting at each level (1 & 2), branching to the next level is performed
when the condition is met.

3) The sequencer is restarted when the restart condition is met.

4) The sequencer is terminated and a break occurs when the level 3 condition is met.

B Setting Sequencer
The sequencer operates in the following order: The event can be set at each level and as arestart condition.

1. The sequencer starts after the program execution.

2. Depending on the setting at each level (1 & 2), branching to the next level is performed when the
condition is met.

3. The sequencer is restarted when the restart condition is met.
4. The sequencer isterminated and a break occurs when the level 3 condition is met.
Use the following commands to set the sequencer.
SET SEQUENCE: Setting an event for the sequencer
[Example]
>SET SEQUENCE 1, 3, 2, r=4
Set event 1, 3, 2to level 1, 2, 3 respectively, and event 4 for the restart condition.

165

CHAPTER 2 DEPENDENCE FUNCTIONS

Figure 2.3-1 Operation of Sequencer

Program execution
start

Levell
Eventl NO
occurs
YES
- YES Event4
occurs
NO
Level2
Event3 NO
occurs
YES
YES Event4
occurs
NO
Level3

l

occurs
YES
Break
B Setting Sequencer

The sequencer can be set by the dialog or the command.

@ Setting by dialog

Select [Debug] - [Sequence] menu.
For details, refer to "4.6.6 Sequence” in "SOFTUNE Workbench Operation Manual”.

@® Setting by Command

1. Theevent is set according to the SET EVENT command.

2. Theevent set by the SET SEQUENCE command is set as a sequence.
For details, refer to "3.22 SET EVENT (type 2)" or "3.28 SET SEQUENCE (type2)" in "SOFTUNE
Workbench Command Reference Manual".

166

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.6 Real-time Trace

While execution a program, the address, data and status information, and the data
sampled by an external probe can be sampled in machine cycle units and stored in the
trace buffer. This function is called real-time trace.

In-depth analysis of a program execution history can be performed using the data
recorded by real-time trace.

B Trace Buffer
The data recorded by sampling in machine cycle units, is called aframe.

The trace buffer can store 64K frames (65536). Since the trace buffer has a ring structure, when it becomes
full, it automatically returns to the start to overwrite existing data.

B Trace Data

Data sampled by the trace function is called trace data.

The following data is sampled:

e Address

« Data

e Status Information
- Access status: Read/Write/Internal access, etc.
- Device status: Instruction execution, Reset, Hold, etc.
- Queue status: Count of remaining bytes of instruction queue, etc.
- Datavalid cycleinformation: Datavalid/invalid

(Since the data signal is shared with other signals, it does not always output data. Therefore, the trace
samples information indicating whether or not the datais valid.)

« Execution time based on the previous trace frame (in 25-ns units)
B Data Not Traced
The following data does not leave access data in the trace buffer.
- Portion of access data whilein native mode.
When operating in the native mode, the F2MC-16L/16L X family of chips sometime performs
simultaneous multiple bus operations internally. However, in this emulator, monitoring of the internal

ROM bus takes precedence. Therefore, other bus data being accessed simultaneously may not be sampled
(in the debugging mode, all operations are sampled).

B Frame number
A number is assigned to each frame of sampled trace data. This number is called aframe number.

The frame number is used to specify the display start position of the trace buffer. The value 0 is assigned to
trace data at the triggering position for sequencer termination. Negative values are assigned to trace data that
have been sampled before arrival at the triggering position (See Figure 2.3-2).

If there is no triggering position for sequencer termination, the value 0 is assigned to the last-sampled trace
data.

167

CHAPTER 2 DEPENDENCE FUNCTIONS

Figure 2.3-2 Frame Numbering at Tracing

0 (Trigger point)

B Trace Filter

To make effective use of the limited trace buffer capacity, in addition to the code fetch function, a trace filter
function isincorporated to provide a means of acquiring information about data accesses to a specific region.

The data trace filter function allows the following values to be specified for two regions:
- Address
- Address mask
- Access attribute (read/write)

Another function can be used so that sampling of redundant frames occupying two or more trace frames, such
as SLEEP and READY, can be reduced to sampling of one frame.

B Trace Trigger Setup
When preselected conditions are met during MCU bus operation monitoring, a trigger for starting a trace can
be generated. This function is called atrace trigger.
For the use of the trace trigger function, specify the code (/CODE) and data access (/READ/WRITE).

Up to 8 trace triggers can be preset each for code attribute and data access attribute. However, actually, the
maximum number of trace triggers is determined as indicated below because the common hardware is used
with events.
Current trace trigger maximum constant
=8- (current data monitoring break count setting + current event count setting)
For the trace trigger setup conditions that can be defined, see Table 2.3-4.

For trace trigger setup, use the following commands:

- SET TRACETRIGGER: Setstrace trigger
- CANCEL TRACETRIGGER: Deletes trace trigger
- SHOW TRACE/STATUS: Displays trace setup status

Figure 2.3-3 shows a trace sampling operation.

168

CHAPTER 2 DEPENDENCE FUNCTIONS

Figure 2.3-3 Trace Sampling Operation (Trace Trigger)

Start Resume Suspend Resume Suspend Resume Suspend

. ! ! J !

Program flow

Trace buffer

B Setting Data Monitoring Trace Trigger
When the debug function on MB2147-01 is set to Trace Enhancement mode, it is possible to set a trace
trigger by a data monitoring condition.
For the data monitoring condition, see the data monitoring break in Section "2.3.4 Break".

Current maximum constant of data monitoring trace triggers
=8 - (number of data monitoring break settings + number of trace trigger settings +
current number of event settings)

Use the following commands to set the data monitoring trace trigger.

SET TRACETRIGGER/DATAWATCH : Sets a data monitoring trace trigger
CANCEL TRACETRIGGER/DATAWATCH : Deletes a data monitoring trace trigger
SHOW TRACETRIGGER/DATAWATCH : Displays a data monitoring trace trigger

B Trace Control during Executing User Program
In MB2147-01, the trace control is enabled while the user program is executed. However, it is necessary to
end the trace execution.

The parameter that can be controlled is as follows;
e Set tracetrigger

e Set filtering area

» Digplay trace data

e Clear trace data

» Search trace data

o Settracede ay*

« Display measurement result of time"

« Forced termination/resumption of trace execution’
*: Only when the debugging isin trace enhancement mode.

Notes:
e The trace execution means the trace data acquisition is "Tracing" or "Pause".
« The following method exists to terminate the trace execution.
1. Forced termination of trace execution
- Trace window - Shortcut menu [Forced termination]
- Trace toolbar [Forced termination] button
2. Trace trigger (Termination)
- SET TRACETRIGGER command
- Trace trigger setting dialog

169

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.6.1 Setting Single Trace

To perform a single trace, follow steps 1 through 4 below. When a program is executed
after completion of the following steps, trace data is sampled.

1) Set an event mode to single trace mode.

2) Enable the trace function.

3) Perform the event and sequencer setup.

4) Perform trace buffer full break setup.

B Setting Trace
To perform a single trace, complete the following setup steps. When a program is executed after completion
of the steps, trace data is sampled.
1) Set an event mode to single trace mode.

Use SET MODE command for this setting.
2) Enable the trace functions.

Enable the trace function using the ENABLE TRACE command.

To disable the trace function, use the DISABLE TRACE command.

Note that the trace function is enabled by default when the program is launched.
3) Perform the event and sequencer setup.

Use of atrace trigger makes it possible to control trace sampling and make effective use of the limited
trace buffer capacity. If thereisno such necessity, setup need not be performed.

With a trace trigger, it is possible to specify the start and stop of trace sampling to be performed at a
trigger hit.

To use atrace trigger, input the SET TRACE/TRIGGER command and then perform trace trigger setup
using the SET TRACETRIGGER command.

4) Perform trace buffer full break setup.
A break can be invoked when the trace buffer becomes full.

To perform setup, use the SET TRACE command. Thisbreak feature is disabled when the program starts.
To view the setting, use SHOW TRACE/STATUS.

Table 2.3-6 lists trace-related commandsin the single trace.

Table 2.3-6 Trace-related Commands Available in Single Trace

170

Available command

Function

SET TRACETRIGGER
CANCEL TRACETRIGGER

Setstrace trigger
Deletestrace trigger

SET TRACE
SHOW TRACE
SEARCH TRACE
ENABLE TRACE
DISABLE TRACE
CLEAR TRACE

Setstrace buffer full break
Displaystrace data
Searchesfor trace data
Enables trace function
Disablestrace function
Clearstrace function

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.6.2 Multi Trace

Only when an event trigger occurred, the multi trace samples data before and after the
event trigger.

B Multi Trace
To use the multi trace function, the SET MODE command is set to the following mode.

Debug function: "Trace Enhancement” mode
Event mode: "Multi trace" mode

The multi trace samples data where an event trigger (trace end trigger) occurs before and after the event
trigger.

It can be used for tracing required only when a certain variable access occurs, instead of continuous tracing.

The trace data sampled at one event trigger is called a block. The trace buffer for multi trace in MB2147-01
can hold 64K frames. When dividing into blocks, select the size of one block from 128/256/512/1024 frame.
64 to 512 blocks can be sampled according to the block size.

There are the following two event triggers of the multi trace.

« Trace end trigger: Change to the next block in the point that becomes a hit.

e Multi trace end trigger: Terminate the trace acquisition in the point that becomes a hit.

Figure 2.3-4 Multi Trace Sampling
Start

execution Event 1 Event 2 Event 3

. ! ! !

Program flow

Trace buffer

-

Block

B Multi Trace Frame Number
Data of 128 to 1024 frames can be sampled according to the block size at each time an event occurs (trace
end trigger). This data unit is called a block, and each sampled block is numbered starting from 0. This is
called the block number.
A block is a collection of sampled data before and after the event trigger occurs. At the event trigger is 0,
trace data sampled before reaching the event trigger point is numbered negatively, and trace data sampled
after the event trigger point is numbered positively. These frame numbers are called local humbers (See
Figure 2.3-5).
In addition to this local number, there is another set of frame numbers starting 1 with the oldest data in the
trace buffer. This is called the global number. Since the trace buffer can hold 64K frames, frames are
numbered 1 to 65536 (See Figure 2.3-5).

To specify which frame datais displayed, use the global number or block and local numbers.

171

CHAPTER 2 DEPENDENCE FUNCTIONS

Figure 2.3-5 Frame Number in Multi Trace
Block number Trace buffer Frame number

Global number Local number

1 -63
2 -62
1 64 0 < Event trigger
127 +62
128 +63
129 -63
130 - 62
2 : : .
192 0 < Eventtrigger
255 +62
256 +63
65409 -63
65410 -62
512 6547é o < Event trigger
65535 +62
65536 +63

B Trace Delay

172

The trace data which is acquired after one event occurrence is caled a trace delay. There are two types of
trace delay depending on the event hit.

When the trace end trigger (event) hit occurs, the delay can be set within the scope of the block size (128 to
1024 frames). A block is sampled data in combination with the trace data before the event hit and the trace
delay.

When the multi trace end trigger (event) hit occurs, the delay is acquired as many as the number of
occurrence of the subseguent trace end trigger hit.

Example: If you want to get the trace delay for three blocks, the event hit needs to occur four times.

1 ? :|3 4 Get four times of the hit to the trace end trigger
| | l\l ¢| ¢| W I IO §§ I

WMuItitrace end trigger

Trace buffer = 64 blocks I

CHAPTER 2 DEPENDENCE FUNCTIONS

Note:

The multi trace function in MB2147-01 is exclusive with the RAM Checker function. For more details,
refer to Section "2.3.1.6 Debug Function".

173

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.6.3

Setting Methods of Multi Trace

Before executing the multi trace, the following settings must be made. After these
settings, trace data is sampled when a program is executed.

1. Set the debug function to "Trace Enhancement” mode.

2. Set event mode to multi trace mode.

3. Enable trace function.

4. Set event and sequencer.

5. Set trace-buffer-full break.

B Setting Methods of Multi Trace

174

Before executing the multi trace, the following settings must be made. After these settings, trace data is
sampled when a program is executed.
1) Set the debug function to Trace Enhancement mode.
Use SET MODE command for this setting.
2) Set event mode to multi trace mode.
Use the SET MODE command for this setting.
3) Enable trace function.

Use the ENABLE MULTITRACE command for this setting. To disable the function, use the DISABLE
MULTITRACE command.

4) Set an event (trace trigger).
Set an event for sampling the multi trace. Use the SET TRACETRIGGER command for this setting.
5) Set trace-buffer-full break.

To break when the trace buffer becomes full, set the trace-buffer-full break. Use the SET MULTITRACE
command for this setting.

6) Set ablock size.

Use SET MULTITRACE command to set this.
7) Set atrace delay.

Use SET DELAY command to set this.

CHAPTER 2 DEPENDENCE FUNCTIONS

Table 2.3-7 shows the list of trace-related commands that can be used in multi trace mode.

Table 2.3-7 Trace-related Commands That Can Be Used in Multi Trace Mode

Mode Usable Command Function

SET TRACETRIGGER Sets events
SHOW TRACETRIGGER Displays event setup status
CANCEL TRACETRIGGER Deletes event
ENABLE TRACETRIGGER Enables event
DISABLE TRACETRIGGER Disables event

Multi trace SET MULTITRACE Sets trace-buffer-full break

mode SHOW MULTITRACE Displaystrace data

SEARCH MULTITRACE
ENABLE MULTITRACE
DISABLE MULTITRACE
CLEAR MULTITRACE

Searches trace data
Enables trace function
Disables trace function
Clearstrace data

SET DELAY
SHOW DELAY

Setstrace delay
Displaystrace delay

175

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.6.4 Displaying Trace Data Storage Status

It is possible to displays how much trace data is stored in the trace buffer. This status
data can be read by specifying /STATUS to the SHOW TRACE command.

B Displaying Trace Data Storage Status

It is possible to displays how much trace data is stored in the trace buffer. This status data can be read by
specifying /[STATUS to the SHOW TRACE.

[Example€]
>SHOW TRACE/ STATUS
en/di s = enabl e ; Trace function enabl ed
buffer full = nobreak ; Buf fer full break function disabled
sanpl i ng = end ; Trace sanpling tern nates
code = enabl e ; Code execution enabl ed
ver bose = di sabl e ; Ver bose trace di sabl ed
frame no. = -00120 to 00000 ; Frame -120 to O store data

>

176

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.6.5 Specify Displaying Trace Data Storage Status

The data display start position in the trace buffer can be specified by inputting a step
number or frame number using the SHOW TRACE command. The data display range can
also be specified.

B Specifying Displaying Trace Data Start
Specify the data display start position in the trace buffer by inputting a step number or frame number using
the SHOW TRACE command. The data display range can also be specified.

[Example]
- InSingle Trace Mode

>SHOW TRACE/ CYCLE -6 ; Start displaying fromframe -6
>SHOW TRACE/ CYCLE -6..0 ; Display fromframe -6 to frame O
>SHOW TRACE - 6 ; Start displaying fromframe -6
>SHOW TRACE -6..0 ; Displays fromfrane -6 to frane 0O

177

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.6.6 Display Format of Trace Data

The trace data display format can be selected by running the SHOW TRACE command
with a command modifier specified. If setup is completed with the SET SOURCE
command so as to select a source line addition mode, a source line is attached to the
displayed trace data.

There are three formats to display trace data:

* Display in instruction execution order (Specify /INSTRUCTION.)

» Display all machine cycles (Specify /ICYCLE.)

» Display in source line units (Specify /ISOURCE.)

W Display in Instruction Execution Order (Specify /INSTRUCTION.)
Trace sampling is performed at each machine cycle, but the sampling results are difficult to display because
they are influenced by pre-fetch, etc. Thisiswhy the emulator has a function to alow it to analyze trace data
as much as possible. The resultant data is displayed after processes such as eliminating pre-fetch effects,
analyzing execution instructions, and sorting in instruction execution order are performed automatically.
However, this function can be specified only in the single trace while in the debugging mode.

In this mode, data can be displayed in the following format.

178

CHAPTER 2 DEPENDENCE FUNCTIONS

Address Disassemble Description Time Stamp
’/ Hexadecimal

Indecates instruction

Displays difference of executed

executed time between this frame and
Step Number next frame (decimal).
’/Decimal, signed } — Data —————— Theunitisns.
Hexadecimal
>SHOW TRACE -194
frame no. [address \mnemonic time stamp
-00675 :HFO 2C1 PUSHW A 375
00672 018257 external write access. 5F 375
-00669 :\018258 external write access. 5E 375
-00666 02C2 CALL \sort va 625
-00661 : 018255 externa write access. C5 625
-00658 : 018256 externa write access. 02 625
\ sort_val :
-00655 : FFOOD2 LINK #0E 500
-00651 : 018253 External read access. 81 625
-00648 : 018254 | external read access. 81 625 _
-00645 : 000186 | internal write access. Device Status -
-00643 - ** RESET ** ** STANDBY ** : Hardware standby
> *+ RESET ** : Reset
*% THOLD ** : Tool hold
— DataAccess «*+ UHOLD ** : Userhold
*EOWALT *x . Ready pininput
internal read access : Readaccessto «x SLEEP ** : Sleep

internal memory or STOP ** . Stop

internal wite access: Writeaccessto
internal memory

external read access : Readaccessto
external memory

external wite access: Writeaccessto
external memory

W Displaying All Machine Cycles (Specify /ICYCLE)
Detailed information at all sampled machine cycles can be displayed.
In this mode, no source is displayed irrespective of the setup defined by the SET SOURCE command.
[Example]

>SHOW TRACE/ CYCLE - 672
frame no. address data a-status d-status Qt dfg event time stanp

- 00672 : 018257 ---- BEWA ------- --- & 125
-00671 : 018257 5F --- EXECUTE --- @ 125
- 00670 : 018257 5F --- EXECUTE --- @ 125
- 00669 : 018257 ---- EWA ------- --- & 125
- 00668 : 018257 82 --- EXECUTE --- @ 125
- 00667 : FF02C6 5F --- EXECUTE --- @ 125
- 00666 Dommmem ---- - EXECUTE 4by C 125
- 00665 . FFO2C6 ---- ICF ------- --- & D 125
- 00664 . FF02C6 5F06 --- EXECUTE FLH @ 125
- 00663 : FFOOD2 ---- ICF ------- --- & 125
- 00662 . FFOOD2 OEO8 --- EXECUTE --- @ 125
- 00661 : 018255 ---- BEWA ------- --- & 125

179

CHAPTER 2 DEPENDENCE FUNCTIONS

How to read trace data
frameno. address data astatus d-status Qst dfg event timestamp
D 2 ©) 4 ®) ® O © C)
(2):frame number (Decimal number)
(2):executed instruction address, and data access address (Hexadecimal number)
(3):data (Hexadecimal number)
(4):access information (a-status)

IWA : write access to internal memory
EWA : write access to external memory
IRA : read access to internal memory
ERA : read access to external memory
ICF : code fetch to internal memory
ECF : code fetch to external memory

: valid "d-status" information
(5):device status (d-status)

STANDBY : hardware standby
THOLD : tool hold

UHOLD : user hold

WAIT . waiting with ready pin
SLEEP : dleep

STOP : stop

EXECUTE : execute instruction
RESET . reset

------- : invalid d-status information
(6):instruction queue status

FLH : flush queue

-by : number of remainder code of queueis - byte (-: 1 to 8)
(7):information valid flag

& : addressisvalid

@ : dataisvalid
(8):event information

C : code event

D : data event

(9):time stamp display (ns unit)
displays difference of executed time between this frame and next frame (decimal)

Note:

Information about event hits is excluded from the displayed information. For code execution, in
particular, the effect of a prefetch is eliminated in consideration of the count of data in the instruction
queue. Therefore, the information about hits is displayed for frames after a prefetch frame at an
address for which an event is set.

180

CHAPTER 2 DEPENDENCE FUNCTIONS

B Display in Source Line Units (Specify /SOURCE.)

Only the source line can be displayed. This mode is enabled only in the debugging mode.
[Example]

>SHOW TRACE/ SOURCE -1010. . - 86

step no. source

- 01007 . sanpl e. c$68 value[i] = &target[I];

- 00905 . sanpl e. c$68 value[i] = &target[l];

- 00803 . sanpl e. c$68 value[i] = &target[l];

- 00698 . sanpl e. c$70 sort _val (val ue, 16L);

- 00655 . sanple.c$9 {

- 00594 : sanpl e.c$13 for (k = max / 2; k >=1; k--){
-00185 . sanple.c$14 i = k;

-00149 : sanple.c$15 p=thlp[li - 1];

- 00088 . sanpl e.c$16 while ((j =2 * i) <= max){

Note:

The following operation may be subjected to trace sampling immediately after the MCU operation is
stopped (tool hold). Remember that the operation is unique to evaluation chips and not performed by
mass-produced products.

Access to address 0x000100 and addresses between OXxOFFFFDC and OxOFFFFFF

181

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.6.7

Reading Trace Data On-the-fly

Trace data can be read while executing a program. However, this is not possible during
sampling. Disable the trace function or terminate tracing before attempting to read trace

data.

B Reading Trace Data On-the-fly

182

To disable the trace function, use the DISABLE TRACE command. Check whether or not the trace function
is currently enabled by executing the SHOW TRACE command with /STATUS specified, or by using the
built-in variable, % TRCSTAT.

Tracing terminates when the delay count ends after the sequencer has terminated. If Not Break is specified
here, tracing terminates without a break operation. It is possible to check whether or not tracing has
terminated by executing the SHOW TRACE command with /STATUS specified, or by using the built-in
variable, % TRCSAMP.

To read trace data, use the SHOW TRACE command; to search trace data, use the SEARCH TRACE
command. Usethe SET DELAY command to set the delay count and break operation after the delay count.

[Example]
>G0
>>SHOW TRACE/ STATUS
en/dis = enabl e
buffer ful = nobreak
sampl i ng = on <- Trace sanpling continues.
code . enabl e
ver bose . disable
>>SHOW TRACE/ STATUS
en/dis = enabl e
buffer full = nobreak
sampl i ng = end <- Trace sanpling ends.
code . enabl e
ver bose . disable
franme no. = -00805 to 00000
>>SHOW TRACE - 52
step no. address mmenoni ¢ time stanp
sort _val
- 00655 . FFOOD2 LI NK #0OE 625
-00651 . 018253 external read access. 81 500
-00648 . 013254 external read access. 81 625
- 00645 . 000186 internal wite access. 0000 625

If the CLEAR TRACE command is executed with the trace ending state, trace data sampling can be re-
executed by re-executing the sequencer from the beginning.

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.6.8 Saving Trace Data

This section explains how to save trace data.

B Saving Trace Data
Trace data can be saved in a specified file.

The following two methods are available to save trace data: using GUI (window or dialog) and using only the
command. The same result is obtained from both methods.

® Using GUI for Saving Trace Data

1. Display the trace window.
- Select [View] - [Trace] menu.
2. Specify the name of the file in which to save trace data.
- Right-click on the trace window, and select [Save] from the shortcut menu. The [Save as] dialog

appears.
Specify the file name and where to save trace data. For details, refer to Section "4.4.8 Trace" in

"SOFTUNE Workbench Operation Manual".

® Using Command for Saving Trace Data

1. Savetrace data.
- Execute the SHOW TRACE/FILE command.
For details, refer to Section "4.33 SHOW TRACE (type 3)" in "SOFTUNE Workbench Command
Reference Manual".
When additionally saving trace data in an existing file, execute the SHOW TRACE/FILE/APPEND

command.

183

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.7 Measuring Performance

It is possible to measure the time and pass count between two events. Repetitive
measurement can be performed while executing a program in real-time, and when done,
the data can be totaled and displayed.

Using this function enables the performance of a program to be measured. To measure
performance, set the event mode to the performance mode using the SET MODE
command.

B Performance Measurement Function
The performance measurement allows the time between two event occurrences to be measured and the
number of event occurrences to be counted. Up to 65535 event occurrences can be measured.

® Measuring Time

Measures timeinterval between two events.

Events can be set at 8 points (1 to 8). However, in the performance measurement mode, the intervals, starting
event number and ending event number are combined as follows. Four intervals have the following fixed

event number combination:

Interval Starting Event Number Ending Event Number
1 1 2
2 3 4
3 5 6
4 7 8

® Measuring Count

The specified events become performance measurement points automatically, and occurrences of that event
are counted.

184

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.7.1 Performance Measurement Procedures

Performance can be measured by the following procedure:
» Setting event mode.

e Setting minimum measurement unit for timer.

» Specify performance-buffer-full break.

e Setting events.

» Execute program.

» Display measurement result.

» Clear measurement result.

B Setting Event Mode

Set the event mode to the performance mode using the SET MODE command. This enables the performance
measurement function.

[Example]

>SET MODE/ PERFORMANCE
>

B Setting Minimum Measurement Unit for Timer

It is 1ns as the minimum measurement unit for the timer used to measure performance. And a resolution of
performance measurement datais 25ns.

B Specify Performance-Buffer-Full Break

When the buffer for storing performance measurement data becomes full, a executing program can be
broken. This function is called the performance-buffer-full break. The performance buffer becomes full when
an event occurs 65535 times.

If the performance-buffer-full break is not specified, the performance measurement ends, but the program
does not break.

[Examplé]

>SET PERFORMANCE/ NOBREAK <- Specifying Not Break
>

B Setting Events
Set events using the SET EVENT command.

The starting/ending point of time measurement and points to measure pass count are specified by events.

Events at 8 points (1 to 8) can be set. However, in the performance measurement, the intervals, starting event
number and ending event number are fixed in the following combination.

@® Measuring Time

Four intervals have the following fixed event number combination.

185

CHAPTER 2 DEPENDENCE FUNCTIONS

Interval

Starting Event Number

Ending Event Number

Al W[N] P

1
3
5
7

2
4
6
8

® Measuring Count

The specified events become performance measurement points automatically.

B Executing Program

Start measuring when executing a program by using the GO or CALL command. If a break occurs during

interval time measurement, the data for this specific interval is discarded.

B Displaying Performance Measurement Data
Display performance measurement data by using the SHOW PERFORMANCE command.

B Clearing Performance Measurement Data
Clear performance measurement data by using the CLEAR PERFORMANCE command.

[Example]

>CLEAR PERFORVANCE

>

186

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.7.2 Display Performance Measurement Data

Display the measured time and measuring count by using the SHOW PERFORMANCE
command.

B Displaying Measured Time
To display the time measured, specify the starting event number or the ending event number.

Event number Count of measuring within given time interval
>SHOW PERKORMANCE/ TI ME 1, 9000, 18999, 1000 \\
Minimum
execution time Ngevent =1->2 time (Ms) | count
mntime = 11637.0 = s-eeeeemeeia oo S
Maximum byrax tine = 17745.0 0.0 8999.0 | 0
executiontime | ,yr time = 14538.0 9000. 0 9999.0 | 0
Average b4 0 10999.0 | 0
execution time 0 11993.0 | 2
0 12999.0 | 19
0 13999. 0 | 52
0 14999. 0 | 283
0 15999. 0 | 92
0 16999. 0 | 3
0 17999. 0 | 1
Total measuring count 0 18999.0 | 0
0 | 0
_____________________________ R
t otl | 452
>SHOW PERFORMANCE/ TI ME 1, 13000, 16999, 500
event =1->2 time (us) | count
mntime = 11637.0 ----me i R
max time = 17745.0 0.0 - 12999.0 | 21
avr time = 14538.0 13000.0 - 13499.0 | 13
13500.0 - 13999.0 | 39
Lower time limit for display 14000.0 - 14499.0 | 121
14500.0 - 14999.0 | 162
15000.0 - 15499.0 | 76
15500.0 - 15999.0 | 16
Upper time limit for display 16000.0 - 16499.0 | 2
16500.0 - 16999.0 | 1
17000.0 - 17499.0 | 1
_____________________________ .
t ot al | 452

187

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.8

Measuring Coverage

This emulator has the CO coverage measurement function. Use this function to find what
percentage of an entire program has been executed.

B Coverage Measurement Function

When testing a program, the program is executed with various test data input and the results are checked for
correctness. When the test is finished, every part of the entire program should have been executed. If any part
has not been executed, there is a possibility that the test isinsufficient.

This emulator coverage function is used to find what percentage of the whole program has been executed. In
addition, details such as which addresses were not accessed can be checked.

This enables the measurement coverage range to be set.

To execute the CO coverage, set a range within the code area. In addition, setting a range in the data area,
permits checking the access status of variables such as finding unused variables, etc.

Execution of coverage measurement is limited to the address space specified as the debug area.
Therefore, set the debug areain advance.

This is operable by enabling the coverage function on the chip tabs: [Environment] - [Setup Debugging
Environment] - [Debug Environment] menu.

B Coverage Measurement Procedures

The procedure for coverage measurement is as follows:

1. Set range for coverage measurement:SET COVERAGE
2. Measuring coverage:GO, STEP, CALL
3. Displaying measurement result: SHOW COVERAGE

B Coverage Measurement Operation

The following operation can be made in coverage measurement:

- Load/Save of coverage data: LOAD/COVERAGE, SAVE/COVERAGE

- Abortion and resume of coverage measurement: ENABLE COVERAGE, DISABLE COVERAGE
- Clearing coverage data: CLEAR COVERAGE

- Canceling coverage measurement range: CANCEL COVERAGE

Note:

When the coverage measurement function is used, the monitoring function in RAM area of the 0 bank
cannot be used. For more details, refer to Section "2.3.9 Real-time Monitoring".

188

2.3.8.1

CHAPTER 2 DEPENDENCE FUNCTIONS

Coverage Measurement Procedures

The procedure for coverage measurement is as follows:

» Set range for coverage measurement : SET COVERAGE

» Measure coverage . GO, STEP, CALL

» Display measurement result . SHOW COVERAGE

B Setting Range for Coverage Measurement

Use the SET COVERAGE command to set the measurement range. The measurement range can be set only
within the area defined as the debug area. Up to 32 ranges can be specified.

By specifying /AUTOMATIC for the command qualifier, the code area for the loaded module is set
automatically. However, the library code areais not set when the C compiler library islinked.

[Example]

>SET COVERAGE FF0000 .. FFFFFF

B Measuring Coverage
When preparing for coverage measurement, execute the program.

Measurement starts when the program is executed by using the GO, STEP, or CALL command.

B Displaying Coverage Measurement Result
To display the measurement result, use the SHOW COVERAGE command. The following can be displayed:

Display coverage rate of total measurement area

Displaying coverage rate of load module

Summary of 16 addresses as one block

Detailsindicating access status of each address

Displaying coverage measurement result per source line
Displaying coverage measurement result per machine instruction

@ Display Coverage Rate of Total Measurement Area (Specify /TOTAL for command qualifier)

>SHOW COVERAGE/ TOTAL

total coverage: 82.3%

@ Displaying coverage rate of load module (Specify /MODULE for the command qualifier)

>SHOW COVERAGE/MODULE
sample.abs (84.03%)
+- startup.asm (90.43%)

+-sample.c............, (95.17%)
+-SAMP.C oo it (100.00%)

Displays the load modules and the coverage rate of each module.

189

CHAPTER 2 DEPENDENCE FUNCTIONS

® Summary (Specify /IGENERAL for command qualifier)

>SHOW COVERAGE/ GENERAL
(HEX) 0X0 +1X0 +2X0
o o oemmee e
address 0123456789ABCDEF0123456789ABCDEF0123456 ... ABCDEF Q0(%

FFO000 **3* F*\ 32.0

Display the access status of every 16 addresses

: No access
1 to F : Display the number accessed in 16 addresses by the hexadecimal number.
* : Access all of the 16 addresses.

® Details (Specify /DETAIL for command qualifier.)

Display one line of a
coverage rate

>SHOW COVERAGE/ DETAI L FF0000

address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F CO(%

FFO000 - 100.0
FF0010 100.0
FF0020 18.6
FF0030 100.0
FF0040 93.7
FF0050 100.0
FF0060 0.0
FFO070 0.0
FF0080 0.0

Display the access status of every 1 address
- No access
- :Access

190

CHAPTER 2 DEPENDENCE FUNCTIONS

® Displays per source line (Specify /SOURCE for the command qualifier)

>SHOW COVERAGE/SOURCE main

* 70:{
71: int i
72: struct table *value[16];
73:

* 74 for (i=0; i<16; i++)

* 75 value[i] = &target][i];
76:

* T77: sort_val(value, 16L);

Displays access status of each source line.

No Access
Accessed

Blank: Line which the code had not been generated or is outside
the scope of the coverage measurement

* -

@® Displays per machine instruction (Specify /INSTRUCTION for the command qualifier)

>SHOW COVERAGE/INSTRUCTION F9028F
sample.c$70 {

* F9028F \main:

* F9028F 0822 LINK #22

* F90291 4F01 PUSHW RWO
sample.c$74 for (i=0; i<16; i++)

. F90293 DO MOVN A#O

. F90294 CBFE MOVW @RW3-02,A
. F90296 BBFE MOVW A @RW3-02
. F90298 3B1000 CMPW A#0010

. F9029B FB18 BGE F902B5
sample.c$75 valuel[i] = &target[i];

. F9029D BBFE MOVW A @RW3-02
. F9029F 0C LSLW A

. F902A0 98 MOVW RWO,A

. F902A1 71F3DE MOVEA A ,@RW3-22
. F902A4 7700 ADDW RWO,A

. F902A6 4214 MOV A#l4

. F902A8 7833FE MULUW A @RW3-02
._F902AB 38A001 ADDW A#01A0

Displays access status of each source line.

No Access
Accessed

Blank: Instruction outside the scope of the coverage measurement

*

191

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.9 Real-time Monitoring

The real-time monitoring function is used to display the memory contents during
program execution.

B Real-time Monitoring
The emulator can use the real-time monitoring function when the evaluation chip has the external trace bus
interface.

A real-time monitoring window is provided to display two 256-byte regions for real-time monitoring
purposes. The real-time monitoring window has a function for reading data from the actual memory and
displaying it before program execution (copy function), and a function for displaying updated datain red.
B When referring to RAM area of the 0 bank
To use the real-time monitoring function in the RAM area of the 0 bank, the coverage function must be
disabled by the following methods.
e Command
DISABLE COVERAGE
Refer to "4.23 DISABLE COVERAGE" in "SOFTUNE Workbench Command Reference Manual".
« Diaog
[Chip] tab on the Setup debug environment dialog.
Refer to "4.7.2.3 Debug Environment” in "SOFTUNE Workbench Operation Manual".

192

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.10 Execution Time Measurement

This function measures the program execution time.

B Measurement ltems
M easures time between the start and stop of program execution.

In this emulator debugger, the measurement is performed by the emulation timer or cycle counter. The
following shows the features.

Emulation timer

Resolution : 25 ns

Significant bits: 56 bits

Maximum measurement time : 72,057,594,037,927,935 x 25 ns
Cycle counter

Significant bits: 56 bits

Maximum measurement cycle count : 72,057,594,037,927,935 cycles

In either case, the measurement is performed whenever a program is executed, and the measurement result
displays the following two values:

Number of cycles spent on the previous program execution
Total number of cycles executed since the previous clearing

B Displaying Measurement Results
Either of the following methods can be used to display the measurement resullts.

Display by dialog
The results appear in the time measurement dialog, which can be displayed by selecting [Debug] - [Time
M easurement] menu.

For details, refer to Section "4.6.8 Time Measurement” in "SOFTUNE Workbench Operation Manual".
Display by command

Enter the SHOW TIMER command in the command window.

For details, refer to Section "4.27 SHOW TIMER" in " SOFTUNE Workbench Command Reference Manud".

B Clearing Measurement Results
Either of the following methods can be used to clear the measurement resullts.

Clearing by dialog

Click the [Clear] button in the time measurement dialog, which can be displayed by selecting [Debug] -
[Time Measurement] menu.

For details, refer to Section "4.6.8 Time Measurement™ in "SOFTUNE Workbench Operation Manual”.

193

CHAPTER 2 DEPENDENCE FUNCTIONS

e Clearing by command
Enter the CLEAR TIMER command in the command window.
For detalls, refer to Section "4.28 CLEAR TIMER" in " SOFTUNE Workbench Command Reference Manud".

Note:

The measured execution time is added about ten extra cycles per execution. If the execution cycle is
measured, execute many instructions continuously in order to minimize the effect of error.

194

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.11 Power-on Debugging

This section explains power-on debugging by the emulators for the MB2147-01.

B Power-on Debugging
Power-ON debugging refers to the operation to debug the operating sequence that begins when the power to
the target is switched on.
For products with a dedicated power-on debugging terminal, the MB2147-01 emulator can debug the
sequence performed immediately after power-on. The following functions are available:
Code break
Data monitoring break
Data break
Sequencer and event
Trace trigger
Trace measurement
Coverage measurement
The power-on debugging procedure is described below:

Set the DIP switch on the adapter board mounted in the upper part of the emulator.
Turn on the target board and emulator main unit.

Launch Workbench to start debugging.
For debugging, set hardware breaks, etc.

To start a power-on debugging, run [Execute] - [Power-ON Debug] menu.
Input the lower limit value of the monitoring voltage from the [User Power Monitor Voltage] dialog
box to display PON in the input status bar.

Run the program.

Turn the target board off while running and then back on.

Conduct debugging.

To terminate the power-on debugging, run [Execute] - [Power-ON Debug] menu.

195

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.12 RAM Checker

This section describes the functions of the RAM Checker.

B Overview

The RAM checker obtains history logs of accessing the monitoring addresses on SOFTUNE Workbench and
graphically displayslog files using the accessory tool, "RAM Checker Viewer".
SOFTUNE Workbench has the following functions
- Sets monitoring addresses at 16 points
- Logs data access history of monitoring addresses at intervals of 1 ms
- Monitors monitoring addresses at intervals of 100 ms
B RAM Check Window

The debugging window "RAM Checker" has been added to SOFTUNE Workbench to log/monitor
monitoring addresses.

For operations of Ram checker Window, refer to Section "3.21 RAM Checker Window" of "SOFTUNE
Workbench Operation Manual".

B Use Conditions
The RAM Checker operates under the following conditions.
- Emulator: MB2147-01
- Communication device: USB

The RAM Checker cannot be used for the MB2141/MB2147-05 emulator, or the RS/LAN communication
device. Inthose environments, the main menu [View] - [RAM Checker] is not disabled.

Note:

The RAM Checker is enabled only when the debug function on MB2147-01 is set to "RAM Checker"
mode. For more details, see Section "2.3.1.6 Debug Function".

196

CHAPTER 2 DEPENDENCE FUNCTIONS

B Specifications List

Monitoring Point Count 16 points
Size Bytes/word (16 bits)
Event Functions Max. 8 Points
Sampling Time 1 ms (Fixed)
Update Intervals 100 ms (Fixed)
Log File Formats SOFTUNE format or CSV format

e SOFTUNE format
- Todisplay inthe RAM Checker viewer (recommended)
- Default extensionis".SRL".
e CSV format
- Todisplay in other applications than the RAM Checker viewer
- Default extensionis".CSV".

Note:
The CSV format requires size of data approximately 4 times that of the SOFTUNE format.

B To Use the RAM Checker
User sets the monitoring points, Log File, logging status by GUI or Command to use the RAM Checker.
« GUI
- Set the debug function to "RAM Checker" mode by using [Debug] - [Select Debug Function].
- By short cut menu [Setup...] on the Ram checker Window, user sets the monitoring points.
- By short cut menu [File...] on the Ram checker Window, user setsthe Log File.

- By checking the short cut menu: [Logging start] on the Ram checker Window, a logging status of the
Ram Checker becomes to enable.

« COMMAND
- Set the debug function to "RAM Checker" mode by using SET MODE/CONFIG command.
By command: SET RAMCHECK, user sets the monitoring points.
By command: SET RAMCHECK, user setsthe Log File.
By command: ENABLE RAMCHECK, alogging status of the Ram Checker becomes to enable.

After these commands are set, user program execute and Log File is created by stopped user program. If it is
restarted, aLog File is overwritten.

Note:

If a setting of Overwrite control is enabled on Setup file dialog, a Log File is saved with different name
every other execution.

197

CHAPTER 2 DEPENDENCE FUNCTIONS

For details about settings of the RAM Checker viewer, refer to Section "3.21 RAM Checker Window" of
"SOFTUNE Workbench Operation Manual”. and "4.47 SET RAMCHECK" to "4.51 DISABLE
RAMCHECK" of "SOFTUNE Workbench Command Reference Manual".

Note:

Execution state for MCU such as stop mode or sleep mode cannot be displayed at status bar during
logging.

B About Log File

Following restrictions are made for the size of log file to be created depending on file system where log file is
stored.

FAT:Upto 2GB

FAT32: Up to 4GB

NTFS: No limit.

Others: No limit

If the file system is FAT, FAT32, file name will be changed and continue logging when the size of file is
exceeded limitation.

Note:
If a file is already existed, log file will be overwritten

Example of an operation

If the size of fileis exceeded it's limitation, log file will be created as
filename.srl --> filename#1.srl

If the size gets exceeded the limitation again, log will be shown and changes as follows.
filename#tl.srl --> filenamet2.srl

filename#N-1.srl --> filename#N.srl

Notes:

* Log files should only be saved to built-in HDD only. If network, external HDD or external disk (CD,
DVD, MO etc) are used as destination for saving files, files will not be saved.

e More than 500MB memory is required for disk to save log file of RAM checker. If the capacity of
disk become less than 500MB, logging will be halted.

198

CHAPTER 2 DEPENDENCE FUNCTIONS

B RAM Checker Viewer
The RAM Checker Viewer is a tool for graphically displaying changes in data values with the passage of
time. There are the following three types of data display formats:
- Bit display (Logic Analyzer image)
- Datavaue display (bent line graph)
- Bit/datavalue display (simultaneous display bit and data val ues)
It displays halting CPU, trigger points and the Data Lost as other information.
To halt the operation of CPU, stop mode for low power consumption and power off condition at power-on
debug function will be saved to log.
Trigger point uses event-hit in SOFTUNE Workbench. It is necessary to set event in SOFTUNE Workbench
to use trigger point. When the event-hit is appeared, its information is recorded in alog.
The Data Lost is appeared in the following two causes.

- The DataLost caused by hardware
The emulator obtains data access history of RAM at intervals of 1 ms, but if two or more data access
the same address within 1 ms, the emulator obtains only the data of the last access.
Dataloss caused by hardware indicates that several data accessed the same address.

- The DataLost caused by software
SOFTUNE Workbench obtains data from the emulator at intervals of 100 ms. However, other
application may disable the SOFTUNE Workbench for obtaining data at intervals of 100 ms.
In such cases, the RAM Checker Viewer does not display a portion of the data, but displays the invalid
time band graphically.

Note:

If logging is halted by break or stopping an execution, software lost could be appeared for 1ms to
15ms. at the end of log. This happens because log after stopping an execution will be obtained until
logging is stopped, thus this is not an actual data lost.

For details of RAM Checker viewer, refer to RAM Checker Viewer Manual (FswbRView.pdf) and Help.

199

CHAPTER 2 DEPENDENCE FUNCTIONS

2.3.13

Checking Debugger Information

This section explains how to check information about the MB2147-01 emulator debugger.

B Debugger Information

This emulator debugger enables you to check the following information at startup.
SOFTUNE Workbench file information
Hardware information
If any errors have been discovered during SOFTUNE Workbench operations, check this information and
contact our sales department or support department.
B How to Check
Use one of the following methods to check debugger information.
Command
- SHOW SYSTEM
Refer to Section "1.19 SHOW SYSTEM" in "SOFTUNE Workbench Command Reference Manua .
Diaog
- Version information dialog
Select [Help] - [Version Information] menu.

For details, refer to Section "4.9.3 Version Information” in "SOFTUNE Workbench Operation
Manual".

B Displayed Contents

200

F2MC- 16 Fami |y SOFTUNE Wor kbench VxxLxx

ALL RI GHTS RESERVED,

COPYRI GHT(C) FUJI TSU SEM CONDUCTOR LI M TED 1997

LI CENCED NMATERI AL -

PROGRAM PRCOPERTY CF FUJI TSU SEM CONDUCTCOR LI M TED

Cpu infornmation file path: CPU information file path
Cpu information file version: CPU information file version

Add in DLLs

Si Cm

Product nanme: SOFTUNE Wbr kbench
File Path: Si C907.dll path
Version: SiC907.dll version

SiiEd
File Path: SiiEd3.ocx path
Version: SiiEd3.ocx version

Si MB07

Product nane: SOFTUNE Wbr kbench
File Path: SiMO07.dll path
Version: SiMO07.dll version

Language Tool s

- F2MC-16 Family SOFTUNE C Conpil er version

File Path: fcc907s. exe path

- F2MC-16 Fam |y SOFTUNE Assenbl er version

File Path: fasnD07s.exe path

CHAPTER 2 DEPENDENCE FUNCTIONS

- F2MC-16 Family SOFTUNE Linker version
File Path: flnk907s.exe path

- F2MC-16 Fami |y SOFTUNE Li brarian version
File Path: flib907s.exe path

- SOFTUNE FJ-OVF to S-FORMAT Converter version
File Path: f2ns.exe path

- SOFTUNE FJ-OWF to | NTEL- HEX Converter version
File Path: f2is.exe path

- SOFTUNE FJ-OWF to | NTEL- EXT- HEX Converter version
File Path: f2es.exe path

- SOFTUNE FJ-OVF to HEX Converter version
File Path: f2hs.exe path

Si GsM

Product name: Softune Wrkbench

File Path: SiOsMB07.dll path

Version: Si GsMBO7.dl| version

F2MC- 16 Series Debugger DLL

Product name: SOFTUNE Wor kbench

File Path: SiD907.dll path

Version: SiD907.dll version

Debugger type . Current debugger type

MCU type : Currently selected target MCU
VCpu dI | name : Path and nane of the currently used VCpu dl|
VCpu dl | version : Version of the currently used virtual debugger DLL
DSU type : Currently used DSU type
Common ver si on : Version of nonitor (conmon)
Moni tor version : Version of nonitor (dependent)
Configuration board ID : Configuration board ID
Configuration board version : Configuration board version
MCU frequency . Operating frequency
Communi cati on device . Device type
Baud rate : Baud rate (at RS connection)
Host nanme . LAN host nane (at LAN connection)
REALCS ver si on . REALCS version
Si | ODef

Product nane: Softune Wrkbench
File Path: SilCDef.dll path
Version: SilQODef.dll version

Current path: Path of the currently used project
Language: Currently used | anguage
Help file path: Help file path

201

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4 Emulator Debugger (MB2147-05)

This section explains the functions of the emulator debuggers for the MB2147-05.

B Emulator

When choosing the emulator debugger from the setup wizard, select one of the following emulators. The
following description explains the case when MB2147-05 has been sel ected.

MB2141
MB2147-01
MB2147-05
MB2198

The emulator debugger for the MB2147-05 is software that controls an emulator from a host computer via a
communications line (RS-232C or USB) to evaluate programs.

The following series can be debugged:
F2MC-16L
F2MC-16LX

Before using the emulator, it must be initialized. For details, refer to "Appendix B Downloading Monitor
Program" of "SOFTUNE Workbench Operation Manual".

202

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.1 Setting Operating Environment

This section explains the operating environment setup.

B Setting Operating Environment
For the emulator debugger for the MB2147-05, it is necessary to set the following operating environment.
Predefined default settings for all these setup items are enabled at startup. Therefore, setup is not required
when using the default settings. Adjusted settings can be used as new default settings from the next time.

Monitoring program automatic loading

MCU operation mode
- Debug area

Memory mapping

203

CHAPTER 2 DEPENDENCE FUNCTIONS

24.1.1

Monitoring Program Automatic Loading

Emulators for MB2147-05 can automatically update the monitoring program at emulator

startup.

B Monitoring Program Automatic Loading

204

When the emulators for MB2147-05 is specified, data in the emulator can be checked at the beginning of

debugging to load an appropriate monitoring program and configuration binary data automatically into the
emulator.

The monitoring program and configuration binary data to be compared for update are in Lib\907 under the
directory where Workbench isinstalled.

Enable/disable the monitoring program automatic loading function by choosing [Environment] - [Debugging
Environment Setup] - [Setup Wizard] menu.

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.1.2 MCU Operation Mode

There are two MCU operation modes as follows:
* Debugging Mode
* Native Mode

B Setting MCU Operation Mode
Set the MCU operation mode.

There are two operation modes: the debugging mode, and the native mode. Choose either one using the SET
RUNMODE command.

At emulator start-up, the MCU isin the debugging mode.

The data access to internal bus may not be detected by emulator in native mode. Therefore, when the MCU
operation mode is changed, al the following are initialized:

- Databreakpoints
- Trace measurement settings and trace buffer
B Debugging Mode

All the operations of evaluation chips can be analyzed, but their operating speed is slower than that of mass-
produced chips.

B Native Mode

Evaluation chips have the same timing as mass-produced chips to control the operating speed. Note that the
restrictions the shown in Table 2.4-1 are imposed on the debug functions.

Table 2.4-1 Restrictions on Debug Functions in Native Mode

Applicable series Restrictions on debug functions

Common to all series - When adataread access occurs on the MCU internal bus, theinterna
bus access information is not sampled and stored in the trace buffer.

- Even when adata break or event (data access condition) is set for
data on the MCU internal bus, it may not become a break factor or
sequencer-triggering factor.

- The coverage function may fail to detect an access to data on the
MCU interna bus.

205

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.1.3

Debug Area

Set the intensive debugging area out of the whole memory space. The area functions are

enhanced.

B Setting Debug Area

206

There are two debug areas: DEBUG3, and DEBUGA4. A continuous 1 MB area (16 banks) is set for each area.
Set the debug area using the SET DEBUG command.

Setting the debug area enhances the breakpoint function.

- Enhancement of Breakpoints

Up to six breakpoints (not including temporary breakpoints set using GO command) can be set when the
debug area has not yet been set.

When setting the debug area as the CODE attribute, up to 65535 breakpoints can be set if they are within
the area. At thistime, up to six breakpoints can be set for an area other than the debug area, but the total
count of breakpoints must not exceed 65535. In 00 to OF bank and OF0 to OFF bank, a breakpoint can be
set without specifying the debug area. (DEBUG1, DEBUG2)

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.1.4 Memory Area Types

A unit in which memory is allocated is called an area. There are five different area types.

B Memory Area Types

A unit to allocate memory is allocated is called an area. There are five different area types as follows:
- User Memory Area

Memory space in the user system is called the user memory area and this memory is called the user
memory. Up to four user memory areas can be set with no limit on the size of each area. Define aregion
on a 256-byte boundary.

Access attributes can be set for each area; for example, CODE, READ, etc., can be set for ROM area, and
READ, WRITE, etc. can be set for RAM area. If the MCU attempts access in violation of these attributes,
the MCU operation is suspended and an error is displayed (guarded access break).

To set the user memory area, use the SET MAP command.

- Emulation Memory Area
Memory space substituted for emulator memory is called the emulation memory area, and this memory is
called emulation memory.

It is possible to set up to four areas of 256-KB maximum (including an internal ROM area described | ater)
as emulation memory area. Define a region on a 256-byte boundary. An area larger than 256-KB can be
specified at one time but is divided internally into two or more 256-KB areas for management purposes.

Memory manipulation commands can be executed in relation to emulation memory areas while MCU
execution isin progress.

Emulation memory areas can be set using the SET MAP command.
Further, the access attributes can be set as with user memory areas.

Note:

Even if the MCU internal resources are set as emulation memory area, access is made to the internal
resources.

- Internal ROM Area
The area where the emulator internal memory is substituted for internal ROM is called the internal ROM
area, and this memory is called the internal ROM memory.
Only one internal ROM area with a size up to 256-KB can be specified.
Theinternal ROM areawith asize up to 1 MB can be specified 2 areas.

Memory manipulation commands can be executed in relation to emulation memory areas while MCU
execution isin progress.

Theinternal ROM areais capable to set by the "Setup Map" dialog opening by "Debugger Memory Map...
" from "Setup".

207

CHAPTER 2 DEPENDENCE FUNCTIONS

Note:
The internal memory area, it is set a suitable area automatically by the selected MCU.
- Internal ROM Image Area
Some types of MCUSs have data in a specific area of internal ROM appearing to 00 bank. This specific
areais called the internal ROM image area.
The internal ROM image area is capable to set by the "Setup Map" dialog opening by "Debugger Memory
Map... " from "Setup". This area attribute is automatically set to READ/CODE. The same data as in the
internal ROM area appearsin the internal ROM image area.
Note that the debug information is only enabled for either one (one specified when linked). To debug only
the internal ROM image area, change the creation type of the load module file.
Note:

The internal memory area, it is set a suitable area automatically by the selected MCU.

208

- Undefined Area

A memory area that does not belong to any of the areas described above is part of the user memory area.
Thisareais specifically called the undefined area.

The undefined area can be set to either NOGUARD area, which can be accessed freely, or GUARD area,
which cannot be accessed. Select either setup for the whole undefined area. If the area attribute is set to
GUARD, aguarded access error occurs if accessto this areais attempted.

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.1.5 Memory Mapping

Memory space can be allocated to the user memory and the emulation memory, etc., and
the attributes of these areas can be specified.

However, the MCU internal resources are not dependent on this mapping setup and
access is always made to the internal resources.

B Access Attributes for Memory Areas
The access attributes shown in Table 2.4-2 can be specified for memory areas.

A guarded memory access break occurs if access is attempted in violation of these attributes while executing
aprogram.

When access to the user memory area and the emulation memory area is made using program commands,
such access is allowed regardless of the CODE, READ, WRITE attributes. However, access to memory with
the GUARD attribute in the undefined area, causes an error.

Table 2.4-2 Types of Access Attributes

Area Attribute Description
CODE Instruction Execution Enabled
User Memory READ Data Read Enabled
Emulation Memory
WRITE Data Write Enabled
GUARD Access Disabled
Undefined
NOGUARD No check of access attribute

When access is made to an area without the WRITE attribute by executing a program, a guarded access break
occurs after the data has been rewritten if the access target is the user memory. However, if the access target
is the emulation memory, the break occurs before rewriting. In other words, write-protection (memory data
cannot be overwritten by writing) can be set for the emulation memory area by not specifying the WRITE
attribute for the area.

This write-protection is only enabled for access made by executing a program, and is not applicable to access
by commands.

209

CHAPTER 2 DEPENDENCE FUNCTIONS

B Creating and Viewing Memory Map

Use the following commands for memory mapping.

SET MAP:
SHOW MAP:
CANCEL MAP:
[Examplé]
>SHOW VAP
addr ess
000000 ..

Set memory map.
Display memory map.

Change memory map setting to undefined.

FFFFFF

The rest of setting area nunbers

user = 8

ermul ati on
>SET MAP/ USER H 0. . H 1FF
>SET MAP/ READ/ CODE/ EMULATI ON H FF0000. .

>SET MAP/ USER H 8000. . H 8FFF
>SET MAP/ M RROR/ COPY H 8000. . H 8FFF
>SET MAP/ GUARD

>SHOW VAP
addr ess

000000 ..
000200 ..
008000 ..
009000 ..
FFO000 ..

m rror address area

008000 ..

0001FF
007FFF
008FFF
FEFFFF
FFFFFF

O008FFF

attribute type
noguar d
5

H FFFFFF
attribute type
read wite user
guard
read wite user
guard
read wite cod e emul ati on

copy

The rest of setting area nunbers

user = 6
>

emul ati on

B Internal ROM Area Setting

210

The [Setup Map] dialog box is displayed using [Environment] - [Debugger Memory Map] menu. Y ou can set
the internal ROM area using the [Internal ROM Area] after the [Map Adding] dialog box is displayed by
clicking on the [Setting] button. Y ou can set two areas. Both require empty Emulation area to be set. You can

3

set the region size by (Empty space of the emulation area) x (one area size).

Specify the internal ROM area from the ending address H'FFFFFF (fixed) for area 1. Also, it is possible to

delete the interna ROM area.

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.2 Notes on Commands for Executing Program

When using commands to execute a program, there are several points to note.

B Notes on GO Command
For the GO command, two breakpoints that are valid only while executing commands can be set. However,
care isrequired in setting these breakpoints.

- Invalid Breakpoints
- No break occurs when a breakpoint is set at the instruction immediately after the following instructions.

PCB DTB

NCC ADB
F2MC-16L/16LX SPB CNR

MOV ILM #imm8 ANDCCR,#imm8

ORCCR #mm8 POPW PS

- No break occurs when breakpoint set at address other than starting address of instruction.

- No break occurs when both following conditions met at one time.
- Instruction for which breakpoint set starts from odd-address,
- Preceding instruction longer than 2 bytes length, and breakpoint already set at last 1-byte address of
preceding instruction (This "already-set" breakpoint is an invalid breakpoint that won't break, because
it has been set at an address other than the starting address of an instruction).

- Abnormal Breakpoint

Setting a breakpoint at the instruction immediately after string instructions listed below, may cause a
break in the middle of the string instruction without executing the instruction to the end.

MOVS MOV SW
SECQ SECQW
WBTS MOV
MOV SWI SECQI
F2MC-16L/16LX SECQWI WBTC
MOV SD MOV SWD
SECQD SECQWD
FILS FILSI
FILSW FILSWI

211

CHAPTER 2 DEPENDENCE FUNCTIONS

Bl Notes on STEP Command

@ Exceptional Step Execution

When executing the instructions listed in the notes on the GO command as invalid breakpoints and abnormal
breakpoints, such instructions and the next instruction are executed as a single instruction. Furthermore, if
such instructions are continuous, then all these continuous instructions and the next instruction are executed
asasingleinstruction.

@ Step Execution that won't Break

Note that no break occurs after step operation when both the following conditions are met at one time.

« When step instruction longer than 2 bytes length and last code ends at even address

¢ When breakpoint already set at last address (This "aready-set" breakpoint is an invalid breakpoint that
won't break, because it has been set at an address other than the starting address of an instruction.)

B Controlling Watchdog Timer

It is possible to select "No reset generated by watchdog timer counter overflow™" while executing a program
using the GO, STEP, CALL commands.

Usethe ENABLE WATCHDOG, DISABLE WATCHDOG commands to control the watchdog timer.

- ENABLE WATCHDOG : Reset generated by watchdog timer counter overflow
- DISABLEWATCHDOG : No reset generated by watchdog timer counter overflow
The start-up default in this program is "Reset generated by watchdog timer counter overflow".
[Example]
>DI SABLE WATCHDOG
>0

212

2.4.3

CHAPTER 2 DEPENDENCE FUNCTIONS

Commands Available during Execution of User Program

This section explains the commands available during the execution of a user program.

B Commands Available during Execution of User Program

This emulator debugger allows you to use certain commands during the execution of a user program.
For more details, see "l Debugger” in "SOFTUNE Workbench Command Reference Manual”.

The double circle indicates that it is available during the execution of a user program.

Table 2.4-3 shows the commands availabl e during the execution of a user program.

Table 2.4-3 Commands Available during Execution of User Program

Function Restrictions Major Commands

MCU reset

- 1.3 RESET

Memory operation (Read/\Write) Emulation memory only operable 5.1 EXAMINE,

5.2 ENTER,

5.3 SET MEMORY,

5.4 SHOW MEMORY,
5.5 SEARCH MEMORY,
5.8 COMPARE,
59FILL,

5.10 MOVE,

5.11 DUMP

Line assembly, Disassembly Emulation memory only enabled 6.1 ASSEMBLE,

6.2 DISASSEMBLE

Notes:

The conditions which allow you to use the commands in Table 2.4-3 are limited to the following
cases when a user program is executed.

- [Debug] - [Run] - [Go] menu
- [Go] button on the debug toolbar

The commands in Table 2.4-3 cannot be used when the GO command is entered in the command
window.

An error message appears if you enter a command that cannot be used during the execution of a
user program.

"E4404S Command error (MCU is busy)."

213

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.4 Break

In this emulator debugger, five kinds of break functions can be used. When the program
execution is aborted by each break function, the address and the break factor to do the
break are displayed.

B Break Functions
In this emulator debugger, five kinds of break functions are supported.
e Code break
e Databreak
e Guarded access break
» Trace-buffer-full break
» Forced break

214

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.4.1 Code Break

It is a function to abort the program execution by observing the specified address. The
break is done before an instruction the specified address is executed.

B Code Break
It is a function to abort the program execution by observing the specified address. The break is done before
an instruction the specified address is executed. It is possible to set it in this 65535 debuggers. However, it is
necessary to set the debugging area as a code break area.
When a break occurs due to a code break, the following message is displayed on the Status Bar.
Break at Address by breakpoint
B Setting Method
The code break is controlled by the following method.
* Command
- SET BREAK
Refer to "3.1 SET BREAK (type 1)" in "SOFTUNE Workbench Command Reference Manual".
« Diaog
- Breakpoints set dialog [Code] tab
Refer to "4.6.4 Breakpoint" in "SOFTUNE Workbench Operation Manua".
* Window
- Source window/Disassembly window

B Notes on Code Break
There are severa pointsto note in using code break. First, some points affecting code break are explained.

® Invalid Breakpoints

« No break occurs when a breakpoint is set at the instruction immediately after the following instructions.

F°MC-16/16L/16LX/16H: + PCB +DTB *NCC * ADB +SPB +CNR
* MOV ILM#mm8 «AND CCR#mm8
*OR CCR#mMmmM8 * POPW PS
F°MC-16F: *PCB «DTB ¢«NCC «ADB +«SPB «CNR
* No break occurs when breakpoint set at address other than starting address of instruction.
* No break occurs when both following conditions met at one time.
- Instruction for which breakpoint set starts from odd-address
- Preceding instruction longer than 2 bytes length, and breakpoint already set at last 1-byte address of

preceding instruction (This "already-set" breakpoint is an invalid breakpoint that won't break, because
it has been set at an address other than the starting address of an instruction.)

215

CHAPTER 2 DEPENDENCE FUNCTIONS

® Abnormal Breakpoint
e Setting a breakpoint at the instruction immediately after string instructions listed below, may cause a

break in the middle of the string instruction without executing the instruction to the end.

F°MC-16/16L/16LX/16H: + MOVS * MOVSW * SECQ * SECQW * WBTS
* MOVS *MOVSWI < SECQI * SECQWI *WBTC
*MOVSD +MOVSWD +SECQD «SECQWD
*FILS * FILSI s FILSW * FILSWI

F°MC-16F: Above plus « MOVM «MOVMW

Here are some additional points about the effects on other commands.

@® Dangerous Breakpoints

* Never set a breakpoint at an address other than the instruction starting address. If a breakpoint isthe last 1

byte of an instruction longer than 2 bytes length, and if such an address is even, the following abnormal
operation will result:

- If instruction executed by STEP command, instruction execution not aborted.

- If breakpoint specified with GO command, set at instruction immediately after such instruction, the
breakpoint does not break.

Note:

When the debugging area is set again, all breakpoints in the area are cleared.

216

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.4.2 Data Break

The data break is a function to abort the program execution when the data access (read
or write) is done to the address specified while executing the program.

B Data Break
The data break is a function to abort the program execution when MCU accesses data as for a specified
address.
When a break occurs due to a data break, the following message is displayed on the Status Bar.
Break at Address by databreak at Access address
B Setting Method
The data break is controlled by the following method.
e Command
- SET DATABREAK
Refer t0 "3.9 SET DATABREAK (type 1)" in "SOFTUNE Workbench Command Reference Manua".
- Diaog
- Breakpoints set dialog [Data] tab
Refer to "4.6.4 Breakpoint” in "SOFTUNE Workbench Operation Manual".

Note:
When the debugging area is set again, all breakpoints in the area are cleared.

217

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.4.3

Guarded Access Break

The guarded access break is an abortion of the program execution that happens when
the violation to the set access attribute, doing the access, and guarded (An undefined
area cannot be accessed) area are accessed.

Bl Guarded Access Break

A guarded access break aborts a executing program when access is made in violation of the access attribute
set by using the [Setup] - [Memory Map] menu, and access is attempted to a guarded area (access-disabled
areain undefined areq).

There are three types of the following in Guarded access break.
Code guarded

When the instruction execution is done to the area without the code attribute, the break is done.
Read guarded

When the area without the read attribute is read, the break is done.
Write guarded

When the area without the write attribute is write, the break is done.

If a guarded access occurs while executing a program, the following message is displayed on the Status Bar
and the program is aborted.

Break at Address by guarded access { code/read/write} at Access address

Note:

Code Guarded is affected by pre-fetching.

The F2MC-16L/16LX/16/16H family pre-fetch up to 4 bytes. So, when setting the program area
mapping, set a little larger area (5 bytes max.) than the program area actually used.

Similarly, the F2MC-16F family pre-fetch up to 8 bytes. So, when setting the program area mapping,
set a little larger area (9 bytes max.) than the program area actually used.

218

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.4.4 Trace-Buffer-Full Break

It is a function to abort the program execution when the trace buffer becomes full.

B Trace-Buffer-Full Break

It isafunction to abort the program execution when the trace buffer becomes full.
When a break occurs due to atrace-buffer-full break, the following message is displayed on the Status Bar.
Break at Address by trace buffer full
B Setting Method
The trace-buffer-full break is controlled by the following method.

e Command
- SET TRACE/BREAK
Refer to "4.30 SET TRACE (type 2)" in "SOFTUNE Workbench Command Reference Manual".
- Diaog
- Trace Set Dialog
Refer to "4.4.8 Trace" in "SOFTUNE Workbench Operation Manual".

219

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.4.5 Forced Break

It is a function to abort the execution of the program compulsorily.

B Forced Break
It isafunction to abort the execution of the program compulsorily.
When a break occurs due to aforced break, the following message is displayed on the Status Bar.
Break at Address by command abort request

Note:

A forced break is not allowed while the MCU is in the low-power consumption mode or hold state.
When a forced break is requested by the [Debug] - [Abort] menu while executing a program, the menu
is disregarded if the MCU is in the low-power consumption mode or hold state. If a break must occur,
then reset the cause at user system side, or reset the cause by using the [Debug] - [Reset MCU]
menu, after inputting the [Debug] - [Abort] menu.

When the MCU enters the power-save consumption mode or hold state while executing, the status is
displayed on the Status Bar.

220

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.5 Real-time Trace

While execution a program, the address, data and status information, and the data
sampled by an external probe can be sampled in machine cycle units and stored in the
trace buffer. This function is called real-time trace.

In-depth analysis of a program execution history can be performed using the data
recorded by real-time trace.

B Trace Buffer
The data recorded by sampling in machine cycle units, is called aframe.

The trace buffer can store 64K frames (65536). Since the trace buffer has a ring structure, when it becomes
full, it automatically returns to the start to overwrite existing data.

B Trace Data
Data sampled by the trace function is called trace data.
The following data is sampled:
e Address
« Data
o Status Information
- Access status: Read/Write/Internal access, etc.
- Device status: Instruction execution, Reset, Hold, etc.
- Queue status: Count of remaining bytes of instruction queue, etc.
- Datavalid cycleinformation: Datavalid/invalid
(Since the data signal is shared with other signals, it does not always output data. Therefore, the trace
samples information indicating whether or not the datais valid.)
B Data Not Traced
The following data does not leave access data in the trace buffer.
- Portion of access data whilein native mode.
When operating in the native mode, the F2MC-16L/16LX family of chips sometime performs
simultaneous multiple bus operations internally. However, in this emulator, monitoring of the internal

ROM bus takes precedence. Therefore, other bus data being accessed simultaneously may not be sampled
(in the debugging mode, all operations are sampled).

B Frame Number
A number is assighed to each frame of sampled trace data. This number is called aframe number.

The frame number is used to specify the display start position of the trace buffer. The value 0 is assigned to
trace data at the triggering position for sequencer termination. Negative values are assigned to trace data that
have been sampled before arrival at the triggering position (See Figure 2.4-1).

If there is no triggering position for sequencer termination, the value O is assigned to the last-sampled trace
data

221

CHAPTER 2 DEPENDENCE FUNCTIONS

Figure 2.4-1 Frame Number at Tracing

0 (Trigger point)

B Trace Filter

222

To make effective use of the limited trace buffer capacity, in addition to the code fetch function, a trace filter
function isincorporated to provide a means of acquiring information about data accesses to a specific region.

The data trace filter function allows the following values to be specified for two regions:
- Address
- Address mask
- Access attribute (read/write)

Another function can be used so that sampling of redundant frames occupying two or more trace frames, such
as SLEEP and READY, can be reduced to sampling of one frame.

CHAPTER 2 DEPENDENCE FUNCTIONS

24.5.1 Setting Trace

To perform atrace, follow steps (1), (2) below. When a program is executed after
completion of the following steps, trace data is sampled.

(1) Enable the trace function.

(2) Perform trace-buffer-full break setup.

B Setting Trace
To perform atrace, complete the following setup steps. When a program is executed after completion of the
steps, trace data is sampled.
1) Enable the trace function.
Enable the trace function using the ENABL E TRA CE command.
To disable the trace function, use the DISABLE TRACE command.
The trace function is enabled by default when the program is launched.
2) Perform trace-buffer-full break setup.
A break can be invoked when the trace buffer becomes full.

To perform setup, use the SET TRACE command. This break feature is disabled when the program starts.
To view the setting, use SHOW TRACE/STATUS.

Table 2.4-4 shows the commands rel ated to atrace.

Table 2.4-4 Trace-related Commands

Available command Function
SET TRACE Sets trace-buffer-full break
SHOW TRACE Displaystrace data
SEARCH TRACE Searches for trace data
ENABLE TRACE Enables trace function
DISABLE TRACE Disables trace function
CLEAR TRACE Clearstrace function

223

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.5.2 Displaying Trace Data Storage Status

It is possible to displays how much trace data is stored in the trace buffer. This status
data can be read by specifying /STATUS to the SHOW TRACE command.

B Displaying Trace Data Storage Status

It is possible to displays how much trace data is stored in the trace buffer. This status data can be read by

specifying /[STATUS to the SHOW TRACE.

[Example€]
>SHOW TRACE/ STATUS
en/dis = enabl e
buffer full = nobreak
sanpl i ng = end
frame no. = -00120 to 00050
step no. = -00091 to 00022

>

224

Trace function enabl ed
Buf fer full break function disabl ed

; Trace sanpling term nates

Frane -120 to 50 store data
Step -91 to 22 store data

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.5.3 Specifying Displaying Trace Data Start

The data display start position in the trace buffer can be specified by inputting a step
number or frame number using the SHOW TRACE command. The data display range can
also be specified.

B Specifying Displaying Trace Data Start
Specify the data display start position in the trace buffer by inputting a step number or frame number using
the SHOW TRACE command. The data display range can also be specified.

[Example]
- InSingle Trace Mode

>SHOW TRACE/ CYCLE -6 ; Start displaying fromframe -6
>SHOW TRACE/ CYCLE - 6. .10 ; Display fromframe -6 to frame 10
>SHOW TRACE - 6 ; Start displaying fromstep -6
>SHOW TRACE - 6. .10 ; Displays fromstep -6 to step 10

225

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.5.4 Display Format of Trace Data

The trace data display format can be selected by running the SHOW TRACE command
with a command modifier specified. If setup is completed with the SET SOURCE
command so as to select a source line addition mode, a source line is attached to the
displayed trace data.

There are three formats to display trace data:

» Display in instruction execution order (Specify /INSTRUCTION.)

» Display all machine cycles (Specify ICYCLE.)

» Display in source line units (Specify /ISOURCE.)

W Display in Instruction Execution Order (Specify /INSTRUCTION.)
Trace sampling is performed at each machine cycle, but the sampling results are difficult to display because
they are influenced by pre-fetch, etc. Thisiswhy the emulator has a function to alow it to analyze trace data
as much as possible. The resultant data is displayed after processes such as eliminating pre-fetch effects,
analyzing execution instructions, and sorting in instruction execution order are performed automatically.
However, this function can be specified only in the single trace while in the debugging mode.

In this mode, data can be displayed in the following format.

226

CHAPTER 2 DEPENDENCE FUNCTIONS

B Displaying All Machine Cycles
Detailed information at all sampled machine cycles can be displayed.

Address Disassemble Description
Hexadecimal
’/number Indecates instruction
executed
Step Number
’Egr::ergal number, -‘ __ Data
Hexadecimal
number
>SHOW TRA(| NST! ION -194
step no. addr es mmenoni ¢
sub4:
\‘ -00194 : FFO106 LI NK #00
-00193 : 000186 internal read access. 10F2
-00192 « 1010E6 external wite access. 10F2
-00191 : 000186 internal wite access. 10E6
-00190 : FFO108 ADDSP #F8
-00189 : FFO10A MOVL A 001A
-00188 : 10001A external read access. 0000
-00187 : 10001CX external read access. 4000
-00186 : FFO1O0H MOVL @P+04, A
- 00185 : 1010EZ external wite access. 0000 Device Status —
-00184 . FFO111 MOVL A 0016
-00183 * A SET ** ** STANDBY ** : Hardware standby
> RE\\\\\\\\\\‘ *+ RESET ** @ Reset
** THOLD ** : Tool hold
— DataAccess «*+ UHOLD ** : Userhold
kWAL T ** : Ready pininput
internal read access ‘@ Readaccessto «x SLEEP ** : Sleep
internal memory on . -
STOP - olop
internal wite access: Writeaccessto
internal memory
external read access : Readaccessto
external memory
external wite access: Writeaccessto
external memory

In thismode, no source is displayed irrespective of the setup defined by the SET SOURCE command.

[Example]

>SHOW TRACE/ CYCLE - 587

frame no. address data
- 00587 FF0106 0106
- 00586 FF0106 0008
- 00585 FF0106 0106
- 00584 1010E8 10E8
- 00583 1010E8 0102
- 00582 1010E8 0102
- 00581 000186 0186
- 00580 000186 10F2
- 00579 1010E6 10E6
- 00578 1010E6 10F2
- 00577 1010E6 10F2
- 00576 000186 0186

a-status d-status
ECF EXECUTE
EXECUTE
EVA EXECUTE
EXECUTE
| RA EXECUTE
EVA EXECUTE
EXECUTE

227

CHAPTER 2 DEPENDENCE FUNCTIONS

How toread trace data

frameno. address data astatus d-status Qst dfg
(1) o) (©) 4 ®) (6) (7

(2):frame number (Decimal, signed)
(2):executed instruction address, and data access address (Hexadecimal number)
(3):data (Hexadecima number)
(4):access information (a-status)

WA :write access to internal memory

EWA :write access to external memory

IRA:read access to internal memory

ERA :read access to external memory

I CF:code fetch to internal memory

ECF:code fetch to external memory

---:valid "d-status' information
(5):device information (d-status)

STANDBY :hardware standby

THOLD :tool hold

UHOLD :user hold

WAIT :waiting by ready pin

SLEEP :deep

STOP :stop

EXECUTE:execute instruction

RESET :reset

------- sinvalid d-status information
(6):instruction queue status

FLH:flush queue

-by:number of remainder code of queue is-byte(-:1 to 8)
(7):velid flag

&:thisframe addressisvalid

@:this frame dataisvalid

228

CHAPTER 2 DEPENDENCE FUNCTIONS

B Display in Source Line Units (Specify /SOURCE.)
Only the source line can be displayed. This mode is enabled only in the debugging mode.

[Exampl€]
>SHOW TRACE/ SOURCE - 194
step no. source
-00194 : gtgl.c$251
-00190 : gtgl.c$255 sub5(nf, nd);
-00168 : gtgl.c$259 {
-00164 : gtgl.c$264 p = (char *) &df;
-00161 : gtgl. c$264 p = (char *) &df;
- 00157 : gtgl. c$265 *(p++) = 0xO00;
-00145 : gtgl.c$266 *(p++) = 0xO00;
-00133 : gtgl. c$267 *(p++) = 0x80;
-00121 : gtgl. c$268 *p = Ox7f;
-00116 : gtgl.c$270 p = (char *) &dd
-00111 : gtgl. c$271 *(p++) = Oxff;
- 00099 : gtgl. c$272 *(p++) = Oxff;

Note:

The following operation may be subjected to trace sampling immediately after the MCU operation is
stopped (tool hold). Remember that the operation is unique to evaluation chips and not performed by
mass-produced products.

Access to address 0x000100 and addresses between OxOFFFFDC and OxOFFFFFF

229

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.5.5 Reading Trace Data On-the-fly

Trace data can be read while executing a program. However, this is not possible during
sampling. Disable the trace function or terminate tracing before attempting to read trace
data.

B Reading Trace Data On-the-fly
To disable the trace function, use the DISABLE TRACE command. Check whether or not the trace function
is currently enabled by executing the SHOW TRACE command with /STATUS specified, or by using the
built-in variable, % TRCSTAT.
Tracing terminates when the sequencer has terminated. If Not Break is specified here, tracing terminates
without a break operation. It is possible to check whether or not tracing has terminated by executing the
SHOW TRACE command with /STATUS specified, or by using the built-in variable, % TRCSAMP.

To read trace data, use the SHOW TRACE command; to search trace data, use the SEARCH TRACE

command.
[Example]
>Q0
>>SHOW TRACE/ STATUS
en/ dis = enabl e
buffer full = nobreak
sanpl i ng = on <- Trace sanpling continues
>>SHOW TRACE/ STATUS
en/ dis = enabl e
buffer full = nobreak
sanpl i ng = end <- Trace sanpling ends.
frame no. = -00805 to 00000
step no. = -00262 to 00000
>>SHOW TRACE - 52
step no. address mmenoni ¢ | eve
\ sub5:
- 00052 : FF0125 LINK #02 1
- 00051 : 000186 internal read access. 10E6 1
- 00050 : 1010D6 external wite access. 10E6 1
- 00049 : 000186 internal wite access. 10D6 1

If the CLEAR TRACE command is executed with the trace ending state, trace data sampling can be re-
executed by re-executing the sequencer from the beginning.

230

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.5.6 Saving Trace Data

This section explains how to save trace data.

B Saving Trace Data
Trace data can be saved in a specified file.

The following two methods are available to save trace data: using GUI (window or dialog) and using only the
command. The same result is obtained from both methods.

® Using GUI for Saving Trace Data

1. Display the trace window.
- Select [View] - [Trace] menu.
2. Specify the name of the file in which to save trace data.
- Right-click on the trace window, and select [Save] from the shortcut menu. The [Save as] dialog

appears.
Specify the file name and where to save trace data. For details, refer to Section "4.4.8 Trace" in

"SOFTUNE Workbench Operation Manual".

® Using Command for Saving Trace Data

1. Savetrace data.
- Execute the SHOW TRACE/FILE command.
For details, refer to Section "4.33 SHOW TRACE (type 3)" in "SOFTUNE Workbench Command
Reference Manual".
When additionally saving trace data in an existing file, execute the SHOW TRACE/FILE/APPEND

command.

231

CHAPTER 2 DEPENDENCE FUNCTIONS

2.4.6 Measuring Execution Cycle Count

This function measures the program execution cycle count.

B Measurement ltems
Measures cycle count between the start and stop of program execution.

In this emulator debugger, the measurement is performed by the cycle counter. The following shows the
features of the cycle counter.

Significant bits: 56 bits
Maximum measurement cycle count : 72,057,594,037,927,935 cycles
The measurement is performed whenever a program is executed, and the measurement result displays the
following two values:
« Number of cycles spent on the previous program execution
« Tota number of cycles executed since the previous clearing
B Displaying Measurement Results
Either of the following methods can be used to display the measurement resullts.
» Display by dialog
The results appear in the time measurement dialog, which can be displayed by selecting [Debug] - [Time
M easurement] menu.

For details, refer to Section "4.6.8 Time Measurement” in "SOFTUNE Workbench Operation Manual".
» Display by command
Enter the SHOW TIMER command in the command window.
For detalls, refer to Section "4.27 SHOW TIMER" in " SOFTUNE Workbench Command Reference Manua™.
B Clearing Measurement Results
Either of the following methods can be used to clear the measurement results.
e Clearing by dialog

Click the [Clear] button in the time measurement dialog, which can be displayed by selecting [Debug] -
[Time Measurement] menu.

For details, refer to Section "4.6.8 Time Measurement” in "SOFTUNE Workbench Operation Manua".
* Clearing by command

Enter the CLEAR TIMER command in the command window.

For details, refer to Section "4.28 CLEAR TIMER" in "SOFTUNE Workbench Command Reference Manud".

Note:

The measured number of execution cycles is added about ten extra cycles per execution. If the
execution cycle is measured, execute many instructions continuously in order to minimize the effect of
error.

232

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5 Emulator Debugger (MB2198)

This section explains the functions of the emulator debuggers for the MB2198.

B Emulator Debugger

When choosing the emulator debugger from the setup wizard, select one of the following emulators. The
following description explains the case when MB2198 has been selected.

« MB2141
« MB2147-01
« MB2147-05
« MBZ2198

The emulator debugger for the MB2198 is software that controls an emulator from a host computer via a
communications line (RS-232C, LAN, or USB) to evaluate programs.

The following series can be debugged:
F°MC-16FX
Before using the emulator, the emulator must be initialized.
For further details, refer to "Appendix B Download Monitor Program™, and "Appendix C Setting up LAN
Interface” of "SOFTUNE Workbench Operation Manual”.

233

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.1 Setting Operating Environment

This section explains the operating environment setup.

B Setting Operating Environment
For the emulator debugger for the MB2198, it is hecessary to set the following operating environment.
Predefined default settings for all these setup items are enabled at startup. Therefore, setup is not required
when using the default settings. Adjusted settings can be used as new default settings from the next time.
¢ Monitor program automatic load
» Boot ROM file automatic execution
e MCU operation mode
e Operation frequency control

234

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.1.1 Monitoring Program Automatic Loading

The MB2198 emulator can automatically update the monitoring program at emulator
startup.

B Monitoring Program Automatic Loading

When the MB2198 emulator is specified, data in the emulator can be checked at the starting of debugging to
load an appropriate monitoring program and configuration binary data automatically into the emulator.

The monitoring program and configuration binary data to be compared for update are in Lib\907 under the
directory where Workbench isinstalled.

Enable/disable the monitoring program automatic loading function by choosing [Environment] - [Debug
Environment] - [Setup Wizard] menu.

235

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.1.2

Boot ROM File Automatic Execution

The MB2198 emulator automatically loads and executes the Boot ROM file during startup
of the debug.

Bl Boot ROM File Automatic Execution

When the MB2198 emulator is specified, at the starting of debugging the Boot ROM file is automatically
loaded and then executed. The Boot ROM fileisin Lib\907\BootROM under the directory where Workbench
isinstalled.

The directory containing the Boot ROM file can be displayed using the [Project] - [Setup Project] menu, and
can be modified in the setup project dialog. In addition, it is also possible to automatically execute the Boot
ROM file during the debugger startup or reset of MCU. For details, see the "SOFTUNE Workbench
Operation Manual".

Notes:

As the Boot ROM file contains information necessary for launching the emulator debugger, it must
be executed during startup of the debugger or upon reset. If the execution is not performed, the
debugger may not operate properly.

The PC value when MCU reset has been performed in the emulator debugger varies depending on
whether it is MB2198 or not as follows:

MB2198: Starting address of the Boot ROM file
Other than MB2198: Entry point in the target file (reset vector)

236

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.1.3 MCU Operation Mode

There are two MCU operation modes as follows:
* Full Trace Mode
* Real-Time Mode

B Setting MCU Operation Mode
There are two operation modes: the full trace mode, and the real-time mode. These modes are set using the
[Setup] - [Debug environment] - [Debug environment] menu or the SET RUNMODE command of the
instruction window.

@® Full Trace Mode

In full trace mode, execution of al the instructions can be traced with no trace data missed. However, when
branching has been performed for three times or more within 11 cycles, getting the trace data will be given a
higher priority, as waits are inserted for MCU, it may not run in real time.

@® Real time Mode

In real time mode, execution can be performed in the real time of a program. However, when branching has
been performed for three times or more within 11 cycles, some of the trace data may be missed.

In addition, an error may occur during measurement of the cycle count.

237

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.1.4 Operation Frequency Control

This section describes the operation frequency setup.

B Operation frequency
Set the operation frequency of MCU. Set the operation frequency using a value between 1 and 266MHz,
inclusive. This setting optimizes the communication speed between MCU and emulator.

This function can be set using the [Setup] - [Debugging Environment] - [Debugging Environment] -
[Frequency] menu or the SET FREQUENCY command.

Notes:
e This setting sets the maximum frequency and will not change the actual operation frequency.
¢ When a value smaller than the operation frequency is actually used, the emulator may malfunction.

238

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.2 Notes on Commands for Executing Program

When using commands to execute a program, there are several points to note.

Bl Notes on GO Command

For the GO command, two breakpoints that are valid only while executing commands can be set. However,
care isrequired in setting these breakpoints.

@® Invalid Breakpoints

* No break occurs when a breakpoint is set at the instruction immediately after the following instructions.

PCB DTB
NCC ADB

F°MC-16FX SPB CNR
MOV ILM,#imm8 AND CCR#imm8
OR CCR#mm8 POPW PS

* No break occurs when breakpoint set at address other than starting address of instruction.
B Notes on STEP Command

@® Exceptional Step Execution

When executing the instructions listed in the notes on the GO command as invalid breakpoints, such
instructions and the next instruction are executed as a single instruction. Furthermore, if such instructions are
continuous, then all these continuous instructions and the next instruction are executed as a single instruction.

@ Step Execution that won't Break

Note that no break occurs after step operation when both the following conditions are met at one time.

* When step instruction longer than 2 bytes length and last code ends at even address
* When breakpoint already set at last address

(This "aready-set" breakpoint is an invalid breakpoint that won't break, because it has been set at an
address other than the starting address of an instruction.)

B Controlling Watchdog Timer

It is possible to select "The watchdog timer is stopped in the break. " while executing a program using the
GO, STEP, CALL commands.

Use the ENABLE WATCHDOG, DISABLE WATCHDOG commands to control the watchdog timer.

e ENABLEWATCHDOG Enables the watchdog time during break.
e DISABLEWATCHDOG --- Thewatchdog timer is stopped in the break.
The start-up default in this program is " Enables the watchdog time during break™.
[Examplé]

>DI SABLE WATCHDOG

>0

239

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.3 Commands Available during Execution of User Program

This section explains the commands available during the execution of a user program.

B Commands Available during Execution of User Program
This emulator debugger allows you to use certain commands during the execution of a user program.
For more details, see "l Debugger” in "SOFTUNE Workbench Command Reference Manual”.
The double circle indicates that it is available during the execution of a user program.
Table 2.5-1 shows the commands available during the execution of a user program.
Besides, when the real-time monitor function is used, the specified memory areawill be displayed in the real-
time memory window, and data can be read (updated) even during MCU execution.

Table 2.5-1 Commands Available during Execution of User Program

Function Restrictions Major Commands

MCU reset - 1.3 RESET

Displaying MCU execution status - 2.12 SHOW STATUS

Displaying execution cyclemeasurement | - 4.27 SHOW TIMER
value (cycle)

Memory operation (Read/Write) - 5.1 EXAMINE,

5.2 ENTER,

5.3 SET MEMORY,

5.4 SHOW MEMORY,
5.5 SEARCH MEMORY,
5.8 COMPARE,
59FILL,

5.10 MOVE,

5.11DUMP

Line assembly, Disassembly - 6.1 ASSEMBLE,
6.2 DISASSEMBLE

Set breakpoints Operable while the "Breakpoint Settings 3.1 SET BREAK (type 1),
during Execution" is enabled in the 3.2 SET BREAK (type 2),
execution tab of the debug environment 3.3 SET BREAK (type 3),
dialog* 3.6 CANCEL BREAK,

3.7 ENABLE BREAK,

3.8 DISABLE BREAK,

3.9 SET DATABREAK (type 1),
3.10 SET DATABREAK (type 2),
3.12 CANCEL DATABREAK,
3.13 ENABLE DATABREAK,
3.14 DISABLE DATABREAK

*: For further details, refer to Section "2.5.4 Break".

240

CHAPTER 2 DEPENDENCE FUNCTIONS

Notes:

The conditions which allow you to use the commands in Table 2.5-1 are limited to the following
cases when a user program is executed.

- [Debug] - [Run] - [Go] menu
- [Go] button on the debug toolbar

The commands in Table 2.5-1 cannot be used when the GO command is entered in the command
window.

An error message appears if you enter a command that cannot be used during the execution of a
user program.
"E4404S Command error (MCU is busy)."

In Table 2.5-1, the commands of the memory operation and line assembly/disassembly are read/
write when the CPU is temporarily stopped while the programs are being executed.

241

CHAPTER 2 DEPENDENCE FUNCTIONS

254 Break

In this emulator debugger, seven kinds of break functions can be used. When the
program execution is aborted by each break function, the address and the break factor to
do the break are displayed.

B Break Functions
In this emulator debugger, seven kinds of break functions are supported.
e Code break
e Databreak
e Guarded access break
» Trace-buffer-full break
» Performance-buffer-full break
« Externa trigger break
» Forced break

242

CHAPTER 2 DEPENDENCE FUNCTIONS

254.1 Code Break

This function aborts a program by monitoring the specified address using hardware or
software. Break occurs prior to execution of the instruction of the specified address.

Bl Code Break

This function aborts a program by monitoring the specified address using hardware or software. Break occurs
prior to execution of the instruction of the specified address.

The maximum setting number is as follows:
Hardware . 4 points
Software : 2048 points
When a break occurs due to a code break, the following message is displayed on the Status Bar.
e Hardware
Break at Address by hardware breakpoint
o Software
Break at Address by breakpoint
B Setting Method
The code break is controlled by the following method.
* Command
- SET BREAK/HARD (Hardware)
- SET BREAK/SOFT (Software)
Refer to "3.1 SET BREAK (type 1)" in "SOFTUNE Workbench Command Reference Manual".
« Didog
- Breakpoints set dialog [Code] tab
Refer to "4.6.4 Breakpoint" in "SOFTUNE Workbench Operation Manual”.
e Window
- Source window/Disassembly window

243

CHAPTER 2 DEPENDENCE FUNCTIONS

Notes:

Hardware
There are the following considerations for the hardware break.

- Due to combination use with the sequencer or the trace trigger, the maximum setting number
varies.

- Do not set the hardware break to the instruction located in the delay slot. If such a setting is
performed, branching will not be performed in spite of re-execution after break.

- Make sure that the breakpoint must include the starting address of an instruction. Break may not
occur.

- When execution is performed starting from the address where the hardware break was set, if the
preceding execution has been stopped due to reasons other than instruction break, break will
occur without execution of the instruction. In such a case, when re-execution is performed, the
instruction will be executed.

Software
There are the following considerations for the software break.

- Setting cannot be performed in areas, such as ROM, where write cannot be correctly performed.
In such cases, a verify error will occur when a program starts to be executed (when continuous
execution or step execution is started).

- Be sure to set the breakpoint in the starting address of an instruction. If the breakpoint is set in
the middle of an instruction, the program may run away.

244

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.4.2 Data Break

It is a function to abort the program execution when the data access (read and write) is
done to a specified address.

B Data Break
It is a function to abort the program execution when the data access (read and write) is done to a specified

address.
When a break occurs due to a data break, the following message is displayed on the Status Bar.
Break at Address by databreak at Access address
B Setting Method
The data break is controlled by the following method.

¢ Command

- SET DATABREAK
Refer t0 "3.9 SET DATABREAK (type 1)" in "SOFTUNE Workbench Command Reference Manua".

- Diaog

- Breakpoint Set Dialog [Data] tab
Refer to "4.6.4 Breakpoint” in "SOFTUNE Workbench Operation Manual".

Notes:
« Due to combination use with the sequencer or trace trigger, the maximum setting number varies.
e Word access from an odd address is performed using the byte access for twice (in terms of bus
access). Note that this is the reason why even when word access from an odd address is specified,
there will not be any hits.

245

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.4.3

Guarded Access Break

This function aborts the program execution when access has been performed using the
specified attribute for the specified area.

B Guarded Access Break

For the specified area, when the specified access attribute is found during execution of a user program,
guarded access break will occur.

Guarded access can be specified with the following 3 types of attributes:
Code guarded

Break will occur when an instruction is executed for the specified area
Read guarded

Break will occur when read is performed for the specified area
Write guarded

Break will occur when write is performed for the specified area

If a guarded access occurs while executing a program, the following message is displayed on the Status Bar
and the program is aborted.

Break at Address by guarded access { code/read/write} at Access address

B Setting Method

246

The guarded access break is controlled by the following method.

e Command
- SET GUARDMAP
Refer to "1.48 SET GUARDMAP" in "SOFTUNE Workbench Command Reference Manual".
« Diaog
- Map set didlog
Refer to "4.7.3 Memory Map" in "SOFTUNE Workbench Operation Manual”.

2.5.4.4

CHAPTER 2 DEPENDENCE FUNCTIONS

Sequential Break

A sequential break is a function to abort an executing program as event sequential
control, when the sequential conditions are established.

B Sequential Break
It is a function to abort the program execution by the sequential control of the event, when the sequential
conditions are established. For details of the sequential control, refer to Section "2.55 Control by
Sequencer”.

When a break occurs due to a sequential break, the following message is displayed.

Break at Address by sequential break (level = Level No.)

B Types of Sequential Break
This debugger has the following two types of the sequential breaks.

® 8 level sequence

8 level sequence is set in the sequence window displayed in [View]-[Sequence] menu. This sequence has the
following features.

Up to 8 levels can be set.
Multiple level of the shift ahead can be set to one (shift ahead) event.

The break or trace control (acquisition start/acquisition end) can be set when the sequencer is ended
(END). The break is selected at thistime.

The trace control (acquisition start/acquisition end) can be set at each event hit of the sequencer.
The current sequence level shift state at break can be displayed.

® 3 level sequence

3 level sequence is set in the 3 level sequence setting dialog displayed in [Debug]-[3 level sequence] menu.
For details, refer to section "4.6.6 Seguence” in "SOFTUNE Workbench Operation Manual".

Up to 3 levels can be set.

One level of the shift ahead can be set to one (shift ahead) event.

The break or trace control (acquisition start/acquisition end) can be set when the sequencer is ended
(END). The break is selected at this time.

When 3 level sequenceis displayed in the sequence window, the current sequence level shift state at break
can be displayed.

Note:

The last level number of the sequencer is always 7. Therefore, if the level number of the message
displayed in the status bar at the sequential break is either 8 or 3 level, 7 is displayed in the last level
number of the sequencer.

247

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.4.5 Trace-Buffer-Full Break

It is a function to abort the program execution when the trace buffer becomes full.

B Trace-Buffer-Full Break
It isafunction to abort the program execution when the trace buffer becomes full.
When a break occurs due to atrace-buffer-full break, the following message is displayed on the Status Bar.
Break at Address by trace buffer full
B Setting Method
The trace-buffer-full break is controlled by the following method.
¢ Command
- SET TRACE/BREAK
Refer to "4.30 SET TRACE (type 2)" in "SOFTUNE Workbench Command Reference Manual".
- Diaog
- Trace Set Dialog
Refer to "4.4.8 Trace" in "SOFTUNE Workbench Operation Manual".

248

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.4.6 Performance-Buffer-Full Break

It is a function to abort the program execution when the buffer for the performance
measurement data storage becomes full.

B Performance-Buffer-Full Break
It isafunction to abort the program execution when the buffer for the performance measurement data storage
becomes full.
When a break occurs due to a performance-buffer-full break, the following message is displayed on the
Status Bar.

Break at Address by performance buffer full
B Setting Method
The performance-buffer-full break is controlled by the following method.

» Command
- SET PERFORMANCE/BREAK
Refer to "4.8 SET PERFORMANCE (type 2)" in "SOFTUNE Workbench Command Reference
Manual".
« Didog
- Performance set dialog
Refer to "4.4.13 Performance” in "SOFTUNE Workbench Operation Manual”.

249

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.4.7 External Trigger Break

It is a function to abort the execution of the program when an external signal is input
from TRIG pin that the emulator has.

B External Trigger Break

It isafunction to abort the execution of the program when an external signal is input from TRIG pin that the
emulator has.

When a break occurs due to an external trigger break, the following message is displayed on the Status Bar.
Break at Address by external trigger break
B Setting Method
The external trigger break is controlled by the following method.
e Command

- SET TRIGGER
Refer to "3.42 SET TRIGGER" in "SOFTUNE Workbench Command Reference Manua".

- Diaog
- Debugging environment set dialog [emulation]tab
Refer to "4.7.2.3 Debug Environment" in "SOFTUNE Workbench Operation Manual”.

250

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.4.8 Forced Break

It is a function to abort the execution of the program compulsorily.

B Forced Break
It isafunction to abort the execution of the program compulsorily.
When a break occurs due to aforced break, the following message is displayed on the Status Bar.
Break at Address by command abort request

Note:

A forced break is not allowed while the MCU is in the low-power consumption mode or hold state.
When a forced break is requested by the [Debug] - [Abort] menu while executing a program, the menu
is disregarded if the MCU is in the low-power consumption mode or hold state. If a break must occur,
then reset the cause at user system side, or reset the cause by using the [Debug] - [Reset MCU]menu,
after inputting the [Debug] - [Abort] menu.

When the MCU enters the power-save consumption mode or hold state while executing, the status is
displayed on the Status Bar.

251

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.5

Control by Sequencer

This emulator has a sequencer to control events. By using this sequencer, sampling of
breaks or traces can be controlled while monitoring program flow (sequence). A break
caused by this function is called a sequential break.

B Control by Sequencer

Asshown in Table 2.5-2, controls can be made at 8 different levels.
One event can be set for one level.

The sequencer can perform shift from any level to any level, and the restart conditions can also be specified.

Table 2.5-2 Sequencer Specifications

Function Specifications

Level count 8 level

Conditions settablefor | 1 event conditions (1 to 65535 times pass count can be specified for
each level each condition.)

Restart conditions 1 event conditions (1 to 65535 times pass count can be specified.)

Operations after shift Break, trace control (start/end)

B Setting Events

252

The emulator can monitor the MCU bus operation, and generate a trigger for a sequencer at a specified
condition. Thisfunction is called an event.

In the event, code (/CODE) and data access (/READ/WRITE) can be specified.

Up to eight events can be set. However, since hardware is shared with trace triggers, the actual numbers is
calculated as follows.

Current maximum constant of events =
8 - (current number of break settings + current number of trace trigger settings)

Table 2.5-3 shows the conditions that can be set for events.

Table 2.5-3 Conditions for Event and Trace Trigger

Condition Description
Address Memory location (address bit masking disabled)
Data 16-bit data (data bit masking enabl ed)
Accesssize Byte, word

Access attribute Code/Dataread/Data write

Bus master CPU, DMA

CHAPTER 2 DEPENDENCE FUNCTIONS

The sequence event is setting by the following command.
e SET SEQUENCE :Sets sequence event

« SHOW SEQUENCE :Displays sequence event status
* CANCEL SEQUENCE :D€letes event

Notes:
< Ininstruction execution (/CODE), an event trigger is generated only when an instruction is executed.
This cannot be specified concurrently with other status (/READ or /WRITE).
* In the case of data event, word access from an odd address (in terms of bus access) is performed
using a byte access for twice . Note that this is the reason why even when word access from an
odd address is specified there is nothing found.

253

CHAPTER 2 DEPENDENCE FUNCTIONS

2551 Operating of sequencer

The sequencer works in the following order.

1) The sequencer starts when the program execution begins.

2) It diverges to the level the shift ahead when the condition consists by setting each level.

3) When the restart condition consists, the sequencer is begun again.

4) When the condition that the level becomes END the shift ahead consists, the sequencer
ends and the break is done.

B Operating of Sequencer
The sequencer worksin the following order. The event can be set as each level and arestart condition.

1) The sequencer starts when the program execution begins.
2) It divergesto the level the shift ahead when the condition consists by setting each level.
3) When the restart condition consists, the sequencer is begun again.

4) When the condition that the level becomes END the shift ahead consists, the sequencer ends and the break
isdone.

Note:

When the level the shift ahead has been END, re-execution of the user program will restart the
sequencer.

254

CHAPTER 2 DEPENDENCE FUNCTIONS

Figure 2.5-1 Operation of Sequencer

4
>
py)
3

EVENT 4

EVENT 2

=
m
<
M
r
w

EVENT 3

EVENT 5 i
1

|
EVENT 6 |
1

m
=z
O

255

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.6

Real-time Trace

While execution a program, the address, data and status information, and the data
sampled by an external probe can be sampled in machine cycle units and stored in the
trace buffer. This function is called real-time trace.

In-depth analysis of a program execution history can be performed using the data
recorded by real-time trace.

B Trace Buffer

The data recorded by sampling in machine cycle units, is called aframe.

The trace buffer can store 64K frames (65536). When the enhancing trace board is used, it becomes capacity
for 256M (268,435,456) frame.

Since the trace buffer has a ring structure, when it becomes full, it automatically returns to the start to
overwrite existing data.

B Trace Data

Data sampled by the trace function is called trace data.
Thefollowing datais sampled:

e Branchinginstruction frame

Branching source address, branching target address, disassemble
» Dataframe

Access address, Access data, Access size, Access attribute (read/write), and Bus master (CPU/DMA)
e Specia frame

Program stop, Trace start/end, Reset, Loop count, Extended time stamp frame, Data lost
 Difference of execution time with frame immediately before (unit of CPU clock)

B Frame Number

256

A number is assighed to each frame of sampled trace data. This number is called aframe number.

The frame number is used to specify the display start position of the trace buffer. The value 0 is assigned to
trace data at the triggering position for sequencer termination. Negative values are assigned to trace data that
have been sampled before arrival at the triggering position (See Figure 2.5-2).

If there is no triggering position for sequencer termination, the value O is assigned to the last-sampled trace
data.

CHAPTER 2 DEPENDENCE FUNCTIONS

Figure 2.5-2 Frame Number at Tracing

0 (Trigger point)

B Trace Filter

To make effective use of the limited trace buffer capacity, in addition to the code fetch function, a trace filter
function isincorporated to provide a means of acquiring information about data accesses to a specific region.

The following value can be specified in the data trace filter function.

e Access attribute (read/write)

» Datatrace start address/end address

Moreover, the function to compress into one frame when the same frame is repeated is provided, too.
B Trace Trigger Setup

When preselected conditions are met during MCU bus operation monitoring, a trigger for starting a trace can
be generated. Thisfunctionis called a trace trigger.

For the use of the trace trigger function, specify the code (/CODE) and data access (/READ/WRITE).

Up to 4 trace triggers can be preset each for code attribute and data access attribute. However, actually, the
maximum number of trace triggers is determined as indicated below because the common hardware is used
with events.

Current trace trigger maximum constant = 4 - (current break count setting + current event count setting)
For the trace trigger setup conditions that can be defined, see Table 2.5-2.

For trace trigger setup, use the following commands:;

e SET TRACETRIGGER: Sets trace trigger

e CANCEL TRACETRIGGER: Deletes trace trigger

e SHOW TRACETRIGGER: Displays trace trigger setting status
e SHOW TRACE/STATUS: Displays Trace setup status

Figure 2.5-3 shows a trace sampling operation.
Figure 2.5-3 Trace Sampling Operation (Trace Trigger)

Stat Suspend Resume Suspend Resume Suspend Resume

) ! ! | V.

Program flow

Trace buffler

257

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.6.1

Setting Trace

To perform atrace, follow steps (1) to (3) below. When a program is executed after
completion of the following steps, trace data is sampled.

(1) Enable the trace function.

(2) The event and the sequencer are set.

(3) Perform trace buffer full break setup.

B Setting Trace

258

To perform atrace, complete the following setup steps. When a program is executed after completion of the
steps, trace datais sampled.

1) Enable the trace function.
Enable the trace function using the ENABLE TRACE command.
To disable the trace function, use the DISABLE TRACE command.
The trace function is enabled by default when the program is launched.
2) Set up the event and the sequencer.

Use of the trace trigger allows control of the trace sampling, making full use of the limited-size trace
buffer. Such setups should be performed on a necessary base.

The trace trigger can specify the start/stop of trace sampling with the trigger hit as the reason.

When the trace trigger is used, setup is performed by inputting the SET TRACE/TRIGGER command.
3) Perform trace buffer full break setup.

A break can be invoked when the trace buffer becomes full.

To perform setup, use the SET TRACE command. This break feature is disabled when the program starts.
To view the setting, use SHOW TRACE/STATUS.

Table 2.5-4 shows trace related commands in single trace.

Table 2.5-4 Trace Related Commands in Single Trace

Available command Function
SET TRACETRIGGER Sets up the trace trigger
CANCEL TRACETRIGGER Deletes the trace trigger
SHOW TRACETRIGGER Displaysthe trace trigger
SET TRACE Sets trace buffer full break
SHOW TRACE Displaystrace data
SEARCH TRACE Searches for trace data
ENABLE TRACE Enables trace function
DISABLE TRACE Disables trace function
CLEAR TRACE Clearstrace function

CHAPTER 2 DEPENDENCE FUNCTIONS

Note:

In the case of the data trace trigger, word access from an odd address (in terms of bus access) is
performed using a byte access for twice. Note that this is the reason why there will not be any hits
even when word access is specified from an odd address.

259

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.6.2 Displaying Trace Data Storage Status

It is possible to displays how much trace data is stored in the trace buffer. This status
data can be read by specifying /STATUS to the SHOW TRACE command.

B Displaying Trace Data Storage Status

It is possible to displays how much trace data is stored in the trace buffer. This status data can be read by

specifying /[STATUS to the SHOW TRACE.

[Example€]
>SHOW TRACE/ STATUS
en/dis = enabl e
buffer full = nobreak
code = enabl e

| oop conpress = enable

franme no. = -00120 to 00000

>

260

Trace function enabl ed

Buf fer full break function disabled
Code execution enabl ed

| oop conpress function enabl ed
Frane -120 to O store data

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.6.3 Specifying Displaying Trace Data Start

The data display start position in the trace buffer can be specified by inputting a step
number or frame number using the SHOW TRACE command. The data display range can
also be specified.

B Specifying Displaying Trace Data Start
Specify the data display start position in the trace buffer by inputting a step number or frame number using
the SHOW TRACE command. The data display range can also be specified.

[Example]
>SHOW TRACE/ RAWDATA - 6 ; Start displaying fromframe -6
>SHOW TRACE/ RAWDATA -6..0 ; Display fromframe -6 to frame O
>SHOW TRACE - 6 ; Start displaying fromstep -6
>SHOW TRACE -6..0 ; Displays fromstep -6 to step O

261

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.6.4 Display Format of Trace Data

The trace data display format can be selected by running the SHOW TRACE command
with a command modifier specified. If setup is completed with the SET SOURCE
command so as to select a source line addition mode, a source line is attached to the
displayed trace data.

There are three formats to display trace data:

» Display without analyzing trace data (Specify /RAWDATA.)

» Display in instruction execution order (Specify /INSTRUCTION.)

» Display in source line units (Specify /[SOURCE.)

B Display without Analyzing Trace Data (Specify /RAWDATA.)
The frame output by the emulator is not analyzed and it displaysit asit is.

The display of the source is done and corked in this mode regardless of the setting by the SET SOURCE

command.
Disassemble Description —— Time Stamp
Indicates instruction executed. Displays difference of executed time
Frame Number between this frame and next frame
Decimal, (decimgl)_.
signed — Data — The unit is cycle.
Hexadecimal |
>SHOW TRACE /RAWDATA -2400 Interrupt —
frame no. address dat§(mnemonic tifne stamp Branching by hardware
-02400: DF02B3 BRA DFEDZ96 -> DF0296 1 interrupt
- 02399 : write 0010,af 004A32
-02398 : read 0010 at 004A32 8
-02397: DF029B BGE DF02B5 -> DF02B5 [INT] 3
-02396: DF02BC == << Trace ON code hit>><= 10 Jump address
-02395 : write 0000 at 0001A0 0 Hexadecimal Branch
-02394 : write 0000 at 004A32 destination address
-02393: read /DMA 0000 at 004A32 2 of branch instruction
-02392 : read k 0000 at 0001A2 6
-02391: DF02C4(BRA DFO02CA -> DF02CA 1
-02390 : write 0001 at 0001A2 1
-02389 : ==== << Bfeak at DFO02CA >> =====
-02388 : DF02CA MOV A#10
—— Data access
read : Read access to internal memory
write : Write access to internal memory
/DMA: DMA access
(No indication means CPU access.)
Specia frameisasfollows.
Break at "address': Displays address which program execution is stopped.
Trace ON code(data) hit: Indicates that trace acquisition is started.
Trace OFF code(data) hit: Indicates that trace acquisition is stopped.

262

CHAPTER 2 DEPENDENCE FUNCTIONS

Resat: Indicates that reset is detected.

Loop Count "Number of times": Displays number of times which loop count occurs.
Extended time stamp frame: Displays here when the value of time stamp is 8191 or more.
Data L ost Error: Indicatesthat dataislost.

B Display in Instruction Execution Order (Specify /INSTRUCTION.)
It is aform that is pulled out the divergence frame from the RAW data display, and supplemented between
frames with the reverse-assembly display. Special frames other than the program lockup frame are displayed.

Thedisplay in thismode is as follows.

Time stamp

Disolay that | " Displays difference of executed time
Ispiay that supplements between this frame and next frame
between branch frames. (decimal)

/ The unit is cycle.

>SHOW TRACE /RAWDATA /2400
frame no. address finemonic time stamp -

-02389 : DF02C4 '\BRA DF02CA-> DF02CA 1
sample. c$90 ort_val (value, 16L):
: DF02CA v A, #10
DF02CC ZEXTW
DFO2CD PUSHW AH
DFO2CE PUSHW A
DFO2CF MOVEA A, @RW3-26
: DF02D2 PUSHW A
-02384 : DF02D3 CALL ¥sort_val-> DFOOCE 2

[Disassemble Description —|

ple.c$16 {

¥sort_val:
: DFOOCE LINK #0E
DFOODO PUSHW RWO, RW1

|
Frame Number
Decimal,
signed

Specia frameisasfollows.

Trace ON code(data) hit: Indicates that trace acquisition is started.

Trace OFF code(data) hit: Indicates that trace acquisition is stopped.

Reset: Indicates that reset is detected.

Loop Count "Number of times": Displays number of times which loop count occurs.
Extended time stamp frame: Displays here when the value of time stamp is 8191 or more.
Data Lost Error: Indicates that datais lost.

263

CHAPTER 2 DEPENDENCE FUNCTIONS

B Display in Source Line Units (Specify /SOURCE.)
Only the source line can be displayed.

[Example]
>SHOW TRACE/ SOURCE - 1010. . - 86
step no. source

- 01007 . sanpl e. c$68 value [i] = &arget[I];

- 00905 . sanpl e.c$68 value [i] = &arget[I];

- 00803 . sanpl e. c$68 value [i] = &arget[I];

- 00698 . sanpl e.c$70 sort _val (val ue, 16L);

- 00655 : sanple.c$9 {

- 00594 . sanpl e.c$13 for (k = max / 2; k >=1; k--){
-00185 . sanpl e. c$14 i = k;

-00149 : sanpl e.c$15 p =thlp[i - 1];

- 00088 . sanpl e. c$16 while ((j =2 * i) <= max){

264

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.6.5 Saving Trace Data

This section explains how to save trace data.

B Saving Trace Data
Trace data can be saved in a specified file.

The following two methods are available to save trace data: using GUI (window or dialog) and using only the
command. The same result is obtained from both methods.

® Using GUI for Saving Trace Data

1. Display the trace window.
- Select [View] - [Trace] menu.
2. Specify the name of the file in which to save trace data.
- Right-click on the trace window, and select [Save] from the shortcut menu. The [Save as] dialog

appears.
Specify the file name and where to save trace data. For details, refer to Section "4.4.8 Trace" in

"SOFTUNE Workbench Operation Manual".

® Using Command for Saving Trace Data

1. Savetrace data.
- Execute the SHOW TRACE/FILE command.
For details, refer to Section "4.33 SHOW TRACE (type 3)" in "SOFTUNE Workbench Command
Reference Manual".
When additionally saving trace data in an existing file, execute the SHOW TRACE/FILE/APPEND

command.

265

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.7 Measuring Performance

It is possible to measure the time and pass count between two events. Repetitive
measurement can be performed while executing a program in real-time, and when done,
the data can be totaled and displayed.

Using this function enables the performance of a program to be measured.

Bl Performance Measurement Function

The performance measurement allows the time between two event occurrences to be measured and the
number of event occurrences to be counted. Up to 65535 event occurrences can be measured.

@® Measuring Time

Measures time interval between two events. Two sections can be set.

® Measuring Count

The specified events become performance measurement points automatically, and occurrences of that event
are counted.

266

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.7.1 Performance Measurement Procedures

Performance can be measured by the following procedure:
1. Setting minimum measurement unit for timer.

2. Specify performance-buffer-full break.

3. Setting events.

4. Executing program.

5. Displaying performance measurement data.

6. Clearing performance measurement data.

B Setting Minimum Measurement Unit for Timer
It is 1ns as the minimum measurement unit for the timer used to measure performance. Moreover, the
resolution of the measurement data depends on the clock of CPU.

B Specifying Performance-Buffer-Full Break

When the buffer for storing performance measurement data becomes full, a executing program can be
broken. This function is called the performance-buffer-full break. The performance buffer becomes full when
an event occurs 65535 times.

If the performance-buffer-full break is not specified, the performance measurement ends, but the program
does not break.

[Example€]

>SET PERFORVMANCE/ NOBREAK <-- Speci fyi ng Not Break
>

B Setting Events

The event is set by event setting (performance section setting) dialog or SET PERFORMANCE command.
Two sections can be set.

® Measuring Count

The specified events become performance measurement points automatically.

B Executing Program

Start measuring when executing a program by using the GO or CALL command. If a break occurs during
interval time measurement, the data for this specific interval is discarded.

B Displaying Performance Measurement Data
Display performance measurement data by using the SHOW PERFORMANCE command.
B Clearing Performance Measurement Data
Clear performance measurement data by using the CLEAR PERFORMANCE command.
[Example]

>CLEAR PERFORVANCE
>

267

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.7.2

Display Performance Measurement Data

Display the measured time and measuring count by using the SHOW PERFORMANCE
command.

B Displaying Measured Time
To display the time measured, specify the starting event number or the ending event number.

268

Minimum execution time

Maximum execution time

L)

Average execution time

a

event =1->2
min time = 11637.0
max time = 17745.0
avr time = 14538.0

Count of measuring within
given time interval

Event number
>SHOW PERRQRMANCE/TIME 1,9000,18999,1000

N

Total measuring count

>SHOW PERFORMANCE/TIME

event =1->2
min time = 11637.0
max time = 17745.0
avr time = 14538.0

Lower time limit for display

Upper time limit for display

time (ps) | count

0.0 - 8999.0 | 0

9000.0 - 9999.0 | 0

10000.0 - 10999.0 | 0

11000.0 - 11999.0 | 2

12000.0 - 12999.0 | 19

13000.0 - 13999.0 | 52

14000.0 - 14999.0 | 283

15000.0 - 15999.0 | 92

16000.0 - 16999.0 | 3

17000.0 - 17999.0 | 1

18000.0 - 18999.0 | 0
_____———_____1fff0.0 - | 0
total | 452

1, 13000, 16999, 500

time (us) | count

0.0 - 12999.0 | 21

13000.0 - 13499.0 | 13

///////’//)' 13500.0 - 13999.0 | 39
14000.0 - 14499.0 | 121

14500.0 - 14999.0 | 162

15000.0 - 15499.0 | 76

15500.0 - 15999.0 | 16

16000.0 - 16499.0 | 2

~\~\\\\\\\\‘ 16500.0 - 16999.0 | 1
17000.0 - 17499.0 | 1
total \ 452

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.8 Execution Time Measurement

This function measures the program execution time.

B Measurement ltems
M easures time between the start and stop of program execution.

In this emulator debugger, the measurement is performed by the emulation timer or cycle counter. The
following shows the features.

Emulation timer

Resolution : 25 ns

Significant bits: 64 bits

Maximum measurement time : 18,446,744,073,709,551,615 x 25 ns
Cycle counter

Significant bits: 64 bits

Maximum measurement cycle count : 18,446,744,073,709,551,615 cycles

In either case, the measurement is performed whenever a program is executed, and the measurement result
displays the following two values:

Number of cycles spent on the previous program execution
Total number of cycles executed since the previous clearing

B Displaying Measurement Results
Either of the following methods can be used to display the measurement resullts.

Display by dialog
The results appear in the time measurement dialog, which can be displayed by selecting [Debug] - [Time
M easurement] menu.

For details, refer to Section "4.6.8 Time Measurement” in "SOFTUNE Workbench Operation Manual".
Display by command

Enter the SHOW TIMER command in the command window.

For details, refer to Section "4.27 SHOW TIMER" in " SOFTUNE Workbench Command Reference Manud".

B Clearing Measurement Results
Either of the following methods can be used to clear the measurement resullts.

Clearing by dialog
Click the [Clear] button in the time measurement dialog, which can be displayed by selecting [Debug] -
[Time Measurement] menu.

For details, refer to Section "4.6.8 Time Measurement™ in "SOFTUNE Workbench Operation Manual”.
Clearing by command

Enter the CLEAR TIMER command in the command window.

For detalls, refer to Section "4.28 CLEAR TIMER" in " SOFTUNE Workbench Command Reference Manua".

269

CHAPTER 2 DEPENDENCE FUNCTIONS

Note:

The measured execution time is added about ten extra cycles per execution. If the execution cycle is
measured, execute many instructions continuously in order to minimize the effect of error.

270

CHAPTER 2 DEPENDENCE FUNCTIONS

2.5.9 Power-On Debugging

This section explains power-on debugging by the emulators for the MB2198.

B Power-on Debugging
Power-ON debugging refers to the operation to debug the operating sequence that begins when the power to
the target is switched on.

For products with a dedicated power-on debugging terminal, the MB2198 emulator can debug the sequence
performed immediately after power-on. The following functions are available:

Code break

Data break

Sequencer
Tracetrigger

Trace measurement
Coverage measurement

The power-on debugging procedure is described below:

Set the DIP switch on the adapter board mounted in the upper part of the emulator.
Turn on the target board and emulator main unit.

Launch Workbench to start debugging.

For debugging, set hardware breaks, etc.

To start a power-on debugging, run [Execute] - [Power-ON Debug] menu.

Input the lower limit value of the monitoring voltage from the [User Power Monitor Voltage] dialog box
to display PON in the input status bar.]

Run the program.

Turn the target board off while running and then back on.

Conduct debugging.

To terminate the power-on debugging, run [Execute] - [Power-ON Debug] menu.

271

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6 Emulator Debugger (MB2100-01)

This section describes the emulator debugger functions that are available when the
MB2100-01 is specified.

B Features of Emulator Debugger for MB2100-01
The emulator debugger for MB2100-01 has the following features:

@® Real-time control

The following operations can be controlled during the execution of the user program:

Manipulation of memory content (reading/writing, search, comparison, filling, transfer)
Setting/cancellation of events
Setting/cancellation of trace mode

@® FLASH support

Similar to the RAM area, data can be downloaded to FLASH memory as well as read/written from the
memory window.

@® Multifunctional events

Events can be used in the following six functions:

Code break (hardware)

Code break (hardware/count)
Data break

Data watch break

Sequence

Performance trigger

The number of points that can be set varies depending on the function and model.

@ Inhibiting transition to standby mode

This function inhibits the transition to the standby mode before it is attempted when starting the debugger.

272

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.1 Starting debugging

This section describes the method of starting debugging by with the use the MB2100-01
emulator debugger.

B Starting Debugging

When starting debugging, select the [Debug] - [Start debug] menu. When debugging is started by a new
project, the setup wizard for performing initial setting is activated. For details, refer to "4.7.2.5 Setup
Wizard" in "SOFTUNE Workbench Operation Manual".

B Verification ltems When Starting Debugging
When starting debugging, perform checking for initia settings. When an item of initial setting is not correct,
debugging cannot be started.
- Operating environments of the target
Verify whether the operating environment of the target has a problem.
For details, refer to "2.6.1.1 Operating Environments of the Target”.
- Security
Verify whether the security function has been enabled.
For details, refer to "2.6.1.2 Security".

273

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.1.1 Operating Environments of the Target

This section describes the setting of the target operating environments of the MB2100-01
emulator debugger.

B Operating Environments of the Target

In this emulator debugger, it is necessary to set the following items according to the operating environments
of the target.

« Source oscillation frequency
* Length of DEBUG I/F cable
These settings influence the communication speed of the debugger.

@ Source oscillation frequency

Set main clock (MCLK).
The communication speed between MB2100-01 and the user system varies depending on the main clock.

® Length of DEBUG I/F cable

Specified the length of the cable that suits the length of DEBUG I/F cable.

The allowance maximum transfer rate from MB2100-01 to the direction of MCU changes according to this
length of the cable.

B How to set
The setup wizard sets the operating environments of the target.

For details, refer to "4.7.2.5 Setup Wizard" in "SOFTUNE Workbench Operation Manual".

Figure 2.6-1 Setup Wizard (Communication Setting)

Setup Wizard @

It zetz up about communication,

-

Pleaze zet your orginal ozcillation
frequency ta be uzed.

Set up onginal ozcillation frequency
frequencu(Main]: | 16 {MHz

Fleaze zelect the length of the cable that
cormesponds to the length of DEEUG I4F
cable uzed [ex. © 3m-=5m ar lezs].

Set up lenagth of DEBUG |/F cable

Setup Length |2m orless - |

< Back | Mest » | | Cancel |

274

CHAPTER 2 DEPENDENCE FUNCTIONS

Notes:

* When the operating environment set by the setup wizard is different from the actual operating
environment, the debugger cannot be activated.

e For details on the DEBUG I/F (interface), refer to "EMBEDDED EMULATOR MB2100-01-E
OPERATION MANUAL".

275

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.1.2 Security

This section describes the security of the MB2100-01 emulator debugger.

B Security

When beginning to debug it when the security function of target MCU is effective, it is necessary to enter the
password in this emulator debugger.

For the security function, refer to the hardware manual of model to be used.

B How to enter
When a dialog shown below is displayed, enter a preset password. The password is needs to be entered each
time the debugger is activated.

For details on the password, refer to the description of Password for "OCD (On Chip Debugger)" start
permission in the hardware manual for the product used.

Figure 2.6-2 Debugger Connection Password

g =

Password @

Pleasze enter the debugger connection passward.

Pazsword:

HERERNRNR

ak. | Cancel

Note:

< When authentification of the password has failed, the debugger cannot be activated. Turn on again
the power supply of the target to activate the debugger again.

* When the user system is in the bus sleep state, press the OK button after the bus sleep state is
canceled.

276

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.2 Ending debugging

This section describes the method of ending debugging being executed with the use of
the MB2100-01 emulator debugger.

B Ending debugging
When ending debugging, select the [Debug] - [End debug] menu.
Turn off the power supply of the target after selecting the [End debug] menu.

B When the debugger has aborted

When the debugger has aborted for some reason, problems as described below can occur. When starting
debugging again, take corresponding countermeasures.

@® The code of a software break remains on the flash memory

When a software break is set in a flash memory area, the contents of the flash memory are rewritten with the
code of the software break. When debugging has ended normally, the re-written data is reverted. If it has
ended abnormally, software break code may remain without data being reverted.
When starting the debugger, it checks whether this software break exists. If it does, the following message
appears.

"The software break set in A on B might remain.”

A: A project name displayed when the debugger aborted

B: The date when the debugger aborted
When the message is displayed, download again the program to the flash memory.

® The DEBUG I/F enters the pull-up state.

When the debugger has aborted, the DEBUG I/F enters the pull-up state. When starting debugging again,
ensure that the power supply of MB2100-01 is turned on again.

Note:

A warning message related to a software break is displayed even when a project other than the project
name displayed in the message is used.

After a software breakpoint was deleted, a warning message may be displayed even if the debugger
was ended abnormally while using another debug function.

277

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.3 Efficiently Executing Debugging

This section describes setting for efficient debugging.

B Setting Operating Environment
In order to enable the user to even more comfortably execute debugging, the emulator debugger provides the
following items required to be set correspondingly to, for example, the operating environment and the usage.

» Standard clock frequency for high-speed communication
e Debug function

Therefore, if the default value is used as it is, there is ho need to change this setting. In addition, a set value
once specified is set as adefault for the subsequent operation.

278

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.3.1 Increasing Communication Speed during Debugging

This section describes setting for increasing the communication speed during
debugging.

B Standard Clock Frequency for High-speed Communication
In the case of this emulator debugger, when the standard clock frequency for high-speed communication is
set to the optimal value, the phase modulation mode is enabled, and high-speed communication can be
performed between the target and adapter. The standard clock frequency for high-speed communication is
different in optimal value depending on the MCU. For details, refer to the hardware manua of model to be
used.

B How to set
The method of setting the standard clock frequency for high-speed communication is described bel ow.

@® Setting by dialog
Select the [Setup] - [Debug environment] - [Debug environment] menu, and then select the [Frequency] tab.
For details, refer to "4.7.2.3 Debug Environment™ in "SOFTUNE Workbench Operation Manua”.

@® Setting by Command

Execute the SET FREQUENCY command.
For details, refer to "1.45 SET FREQUENCY" in "SOFTUNE Workbench Command Reference Manual”.

Note:

If the frequency is changed during high-speed communication mode, the MCU must be reset. The
frequency is changed after a reset is updated.

279

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.3.2 Switching Debug Function

This section describes the method of switching the debug function correspondingly to
the usage.

B Debug Functions

The emulator debugger allows the debug functions to be selectively used by effecting mode switching
correspondingly to the usage.

The mode has two types described below.

» Execution time mode
This mode selects the method of measuring the user-program execution time.

- Time measurement mode (default)
This mode measures the time from the start of execution to the break occurrence.

- Performance mode
This mode measures the time between specified two events (points).

» Pass count mode
This mode selects the using method for the pass count function.
- Sequential mode
This mode uses the sequential function.
The pass count break cannot be used.

- Pass count break mode (default)
This mode uses the pass count break.
The sequential function cannot be used.

B Switching methods
Methods of switching to the execution time mode and the pass count mode are described below.
® Dialog-used switching

Select the [Setup] - [Debug environment] - [Debug environment] menu, and then select the [Event] tab.
For details, refer to "4.7.2.3 Debug Environment” in "SOFTUNE Workbench Operation Manual".

® Command-used switching

Execute the SET MODE command.
For details, refer to "1.9 SET MODE (type 2)" in "SOFTUNE Workbench Command Reference Manual”.

280

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.4 Executing Program

This section describes the method of executing a user program with the MB2100-01
emulator debugger.

B Executing a program
A user program is executed in a procedure described below.
1. Open aproject (workspace).
Select the [File] - [Open workspace file] menu.
2. Start debugging.
For details, refer to "2.6.1 Starting debugging".
3. Load an execution-desired target program.
When loading a project target file, select the [Debug] - [Load target file] menu.
4. Execute program.
Select the [Debug] - [Run] - [GO] menu.

For other executions, such as step execution, refer to "4.6.1 Run" in "SOFTUNE Workbench Operation
Manual".

B Control during program execution
This emulator debugger is capable of controlling the following during the execution of a user program.
» Debug function setting/rel ease
e Monitoring
« Power-on debug

281

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.4.1 Setting/Release of Debug Functions

The debug function can be set or released while executing the user program.

B Commands Available during Execution of User Program

A specific debug feature can be set/released while executing the user program in this emulator debugger.
Either the dialog or the command can be set/rel eased.

Table 2.6-1 shows the commands available during execution of user program. For more details, see
"@ Debugger” in "SOFTUNE Workbench Command Reference Manua".

Table 2.6-1 Commands Available during Execution of User Program

Function Major Command name™!

Reset MCU 1.3 RESET

Memory operation (read/write) 5.1 EXAMINE

5.2 ENTER

5.3 SET MEMORY

5.4 SHOW MEMORY
5.5 SEARCH MEMORY
5.8 COMPARE
59FILL

5.10 MOVE

5.11 DUMP

Line assemble/disassemble 6.1 ASSEMBLE
6.2 DISASSEMBLE

Set/del ete breakpoint 3.1 SET BREAK (typel)

3.3 SET BREAK (type3)

3.6 CANCEL BREAK

3.7 ENABLE BREAK

3.8 DISABLE BREAK

3.10 SET DATABREAK (type2)
3.12 CANCEL DATABREAK
3.13 ENABLE DATABREAK
3.14 DISABLE DATABREAK

Set/del ete sequencer 3.22 SET EVENT(type 2)

3.24 CANCEL EVENT

3.25 ENABLE EVENT

3.26 DISABLE EVENT

3.27 SET SEQUENCE (typel)

3.34 CANCEL SEQUENCE(type 1)

3.36 ENABLE SEQUENCE(type 1)

3.38 DISABLE SEQUENCE(type 1)

Trace operation 4.15 CLEAR TRACE

4.17 ENABLE TRACE (type2)
4.19 DISABLE TRACE (type2)
4.20 SEARCH TRACE

*1 : Refer to "SOFTUNE Workbench Command Reference Manual™.

282

CHAPTER 2 DEPENDENCE FUNCTIONS

Note:

An error message appears if you enter a command that cannot be used during the execution of a user
program.

"E4404S Command error (MCU is busy)."

283

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.4.2 Monitoring

This section describes the monitoring function in the MB2100-01 emulator debugger.

B Monitoring
The monitoring function is capable of real-time referencing a variation in the value of a specific address
during user program execution.

The function is capable of avariation in the value of a specified watch variable, in addition to the value of a
specific address.

B How to use
The use procedure of the monitoring function is described below.

® When performing monitoring of the memory window

1. Display the memory window.

e Select the [View] - [Memory] menu.
Specify atarget address for monitoring

2. Enable the monitoring function through any one of methods described below.

» Select the shortcut menu [Monitoring] of the memory window.

» Select the [Setup] - [Debug environment] - [Debug environment] menu to display the [Monitoring] tab.
3. Execute the program.
According to the above, a portion with variation during the program execution is displayed in red.

® When performing monitoring of the watch window

1. Display the watch window.

* Select the [View] - [Watch] menu.
Register atarget watch variable for monitoring
For details, refer to "4.4.7 Watch" in "SOFTUNE Workbench Operation Manual".

2. Enable the monitoring function through any one of methods described below.

» Select the shortcut menu [Monitoring] in the memory window.

» Select the [Setup] - [Debug environment] - [Debug environment] menu to display the [Monitoring] tab.
3. Execute the program.
According to the above, a portion with variation during the program execution is displayed in red.

284

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.4.3 Power-on Debug

This section describes power-on debug function in the MB2100-01 emulator debugger.

B Power-on Debug
Power-on debug is a function to debug the sequence immediately after turning on of the power supply of the
target system.

B How to use
The use procedure of power-on debug is as follows:

® When power-on debug

1. Start debug.
Select [Debug] - [Start debug] menu.
2. Power-on debug mode is made effective.
Select [Debug] - [Run] - [Power on Debug] menu.
It shifts to power-on debug mode.
3. Execute the user program.
Continuous execution of the user program that doesn't do anything such as infinity looping is recommended.
Display the confirmation dialog whether the program execution is interrupted.
4. Do either the following:
e Chip reset isissued from the outside.
e The power supply of the target is turned on again.
After the power supply returns, the program starts running from the reset vector.

® When release power-on debug mode

Before executing the user program
Select [Debug] - [Run] - [Power on Debug] menu.
After executing the user program
Press the cancel button by the interruption dialog displayed in power-on debug mode.

285

CHAPTER 2 DEPENDENCE FUNCTIONS

Notes:

Other debug features cannot be used while debugging power-on at all.
When security is enabled, power on debug is not available.

Selecting the power-on debug menu, the following functions cleared.

- Performance measurement

- Execution cycle measurement

Turning on the power supply of the target again, the following functions cleared.
- Performance measurement

- Trace data

- Data match status of Data watch break

- Hit count of Sequence

- Hit count of Passcount break

286

2.6.4.4

Notes on Commands for Executing Program

CHAPTER 2 DEPENDENCE FUNCTIONS

When using commands to execute a program, there are several points to note.

Bl Notes on GO Command

For the GO command, two breakpoints that are valid only while executing commands can be set. However,
care isrequired in setting these breakpoints.

@® Invalid Breakpoints

No break occurs when the breakpoint is set at three instructions or less executed continuously from the

user interrupt.

No break occurs when breakpoint set at address other than starting address of instruction.

No break occurs when a breakpoint is set at three instructions or less immediately after the following

instructions.
PCB DTB
NCC ADB
SPB CNR
MOV ILM #mm8 AND CCR#imm8
F2MC-16FX OR CCR,#imm8 POPW PS
INT addr16 INTP addr24
INT9 INT #vct
JCTX @A RETI

Undefined instruction

B Notes on STEP Command

@® Exceptional Step Execution

When executing the instructions listed in the notes on the GO command as invalid breakpoints, such an
instruction and next three instructions are executed as a single instruction.
Furthermore, when above-mentioned instructions are included in the next continuous instructions, all of them
and the next continuous three instructions or less are executed as a single instruction.

[Example] When instructions asinvalid breakpointsis consecutive

POP PS @
NOP)
—
RETI 4\/(3)
MOVN A #0 4/ (4
—
MOVW RWOA = (5)
—
NOP < (5)
NOP @

287

CHAPTER 2 DEPENDENCE FUNCTIONS

Because "POP PS" (1) is an instruction as invalid breakpoint shown in "Notes on GO Command"”, no break
occurs at three instructions following "POP PS".

And because instruction (3) is the instruction shown in above-mentioned note among three instructions (2),
(3) and (4) following "POP PS', three instructions (4), (5) and (6) following instruction (3) are executed
continuously.

Consequently, the program counter (PC) advances to NOP instruction (7) when the step operation is executed
from the point of "POP PS" instruction (1).

Note:
« Issuing a chip reset during the execution of the user program, the following functions cleared.

- Execution cycle measurement
- Performance measurement
- Data match status of Data watch break

288

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.5 To Access the Flash Memory

This section describes the access method to the flash memory in the MB2100-01
emulator debugger.

B Access to Flash Memory

In this emulator debugger, the direct operation of the content of the flash memory can be done as well as
RAM area.

B What is flash memory synchronization?
When data is written into the flash memory, the data is stored temporarily. Subsequently, the contents of the
flash memory need to be matched with each other with specific timing.
The matching operation is referred to as "flash memory synchronization" (or, "synchronization of flash
memory").
There are two types of flash memory synchronization:

« Flash memory synchronization [Flash -> Debugger]
Updates the contents of the flash memory.

« Flash memory synchronization [Debbuger -> Flash]
Updates the stored data on the flash memory.

B Methods of flash memory synchronization
Flash memory synchronization can be performed in either amanual or automatic method.

® Flash memory synchronization [Flash -> Debugger]

¢ Manual flash memory synchronization

Select the [Environment] - [Flash area control] menu. For details, refer to "4.7.4 Flash area control” in
"SOFTUNE Workbench Operation Manual".

« Automatic flash memory synchronization
Flash memory synchronization is automatically performed if the target flash memory area is updated
when carrying out one of the following operations.
- Load thefollowing files.
Target file (Load modulefile)
Binary file
- Savethe following files (specify name).
Load modulefile
Binary file
- View the following windows
Memory window
Disassembly window
Source window
Trace window

289

CHAPTER 2 DEPENDENCE FUNCTIONS

- View thefollowing dialogs.
Line Assembly diaog (Disassembly window)
Break setting dialog [Software]

® Flash memory synchronization [Debbuger -> Flash]

e Manua flash memory synchronization

Select the [Environment] - [Flash area control] menu. For details, refer to "4.7.4 Flash area control” in
"SOFTUNE Workbench Operation Manual".

» Automatic flash memory synchronization
- When auser program has been executed

- When areset has been issued

- When debugging has been ended

- When the use of software break is set to prohibition

- When the target file is automatically loaded at start of debugging

Note:

To shorten flash memory synchronization processing, set the communication speed of the debugger to

the high-speed mode. For details, refer to "2.6.3.1 Increasing Communication Speed during
Debugging".

290

CHAPTER 2 DEPENDENCE FUNCTIONS

B Examples of flash memory synchronization

@ In the case of [Debugger -> Flash]

An image in the case where the flash memory synchronization [Debugger -> Flash] has been performed is
shown below.

Variations in the values of the debugger and flash memory
in the case of the flash memory synchronization [Debugger -> Flash]

Debugger Flash memory
FF
= Memery [f= = e FE
ddress +0 +1 +2 4+ Racii =
FEQOD EF EXF EF EF g FF
FF

Memory writing,
loading, etc. by the user

1 FF
fm] Mermairy [= e FE
litf:’ + 41 42 43 ;'u::.i: H
FFOOC0 12 34 56 70 . 4¥N - FF

FF

Execution and reset, etc.

Occurrence of flash memory synchronization [Debugger -> Flash]

»

Symchraniring
Cynchioniorg thes Aach rosdey, 12
Mmmmmmm 34
56
78

291

CHAPTER 2 DEPENDENCE FUNCTIONS

® In the case of [Flash -> Debugger]
An image in the case where the flash memory synchronization [Flash -> Debugger] has been performed is
shown below.

Variations in the values of the debugger and flash memory
in the case of the flash memory synchronization [Flash -> Debugger]

Debugger Flash memory
FF
[Mermary [= e | FF
R FF
FF

Execution of a user program
that writes to the flash memory

12
fmd temary == mEE | | 34
R = 56
78

Synchronization [Flash -> Debugger]

Occurrence of flash memory synchronization
[Flash -> Debugger]

l
= Memery P T e |

ddress +0 +1 +2 +3 Racii 3

FEOOOO 12 34 56 70 .4WH

292

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.6 To Interrupt the Program Execution [Break]

This section describes the method of interrupting the execution of the user program in
the MB2100-01 emulator debugger.

B Break Functions
The function to interrupt the execution of the user program is called a break function.

This Emulator debugger provides the following seven types of break functions;

Code break (hardware)

Code break (hardware/count)
Code break (software)

Data break

Forced break

Data watch break

Sequencer

When by each break function aborts program execution, the address where a break occurred and the break
factor are displayed.

293

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.6.1

Code Break (Hardware)

This function suspends program execution by monitoring a specified address by
hardware. A break occurs before an instruction at the specified address is executed.

B Code Break (Hardware)
This function suspends program execution by monitoring a specified address by hardware. A break occurs
before an instruction at the specified address is executed.

Code Break (Hardware) has the hardware/count for which a path count can be set.

The maximum number of points that can be set is asfollows:

Hardware: 8 points

Hardware/count: 2 points

When the code break (hardware) occurs, the following message appears in the status bar.

B How to set
Control the code break in the following methods:

Hardware:

Break at [Address] by code event break
Hardware/count

Break at [Address] by sequentia or pass count break

Command
- SET BREAK/HARD
Refer to "3.1 SET BREAK (type 1)" in "SOFTUNE Workbench Command Reference Manual".
Diaog
- "Code" tab in the breakpoint setting dialog
Refer to "4.6.4 Breakpoint" in "SOFTUNE Workbench Operation Manual".

Window

- Source window/disassembl e window
Refer to "3.7 Source Window" or "3.9 Disassemble Window" in "SOFTUNE Workbench Operation
Manual".

B Special Operation when breakpoint is set
If the specified condition is satisfied in the debugger, note that the following phenomenon occurs.

294

No progressing of program counter (PC)

If the hardware break is set to the string instruction, the pass count may be added severa times by one
instruction execution.

Furthermore, if program is executed from the string instruction which the hardware break is set, a break
occurs without progressing PC.

When the breakpoint is hit, the stopping address becomes after two instructions or less from the address
that is sure to stop originaly.

During continuous user program execution, the address where the program stops becomes after two
instructions or less from the address that is sure to stop originally when either of the following conditions
was satisfied.

CHAPTER 2 DEPENDENCE FUNCTIONS

- When the break operation is generated while the instruction where the user interrupt is generated and
the next one instruction or less are executed

- When the bresk operation is generated while either of the following instructions and the next one
instruction or less are executed

- INT addr16

- INTP addr24

- POPW PS

- AND CCR #mm8

- OR CCR #imm8

- MOV ILM #mm8

- Prefix codes (PCB, DTB, ADB, SPB, CMR, NCC)
-INT9

- INT #vct

-JCTX @A

- RETI

- Undefined instructions (exceptions)

Notes:

« When setting a breakpoint, always specify the starting address of the instruction. A break may not
occur if an address other than the starting address is specified.

* A code break shares points with the following functions. The maximum number varies depending
on how those functions are used.

- Data break
- Data watch break
- Sequence

« When hardware or hardware/count break is set at the top of the reset handler, the break does not
occur.

« When the pass count mode is the passing count break mode, the hardware/count break cannot be
used. For details, refer to "2.6.3.2 Switching Debug Function".

295

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.6.2 Code Break (Software)

This function suspends program execution by monitoring a specified address by
software. A break occurs before executing an instruction at the specified address.

B Code Break (Software)
This function suspends program execution by monitoring a specified address by software.
Setting area : RAM area or flash memory area
The break conditions : Before executing an instruction the specified address
The maximum number of points; 4096 points
When the code break (software) occurs, the following message appears in the status bar.
Break at [Address] by breakpoint
B Operation Requirements
Please set the use of the software break to permission when you use the code break (software) by the
following method. It is not possible to set it to not only the flash memory area but also RAM area when
prohibiting it.
« Diaog
- Setup wizard
For details, refer to "4.7.2.5 Setup Wizard" in "SOFTUNE Workbench Operation Manual".
- Debug environment setting dialog "Break" tab
For details, refer to "4.7.2.3 Debug Environment™ in "SOFTUNE Workbench Operation Manual”.
B How to set
Control the code break in the following methods:
* Command
- SET BREAK/SOFT
Refer to "3.1 SET BREAK (typel)" in "SOFTUNE Workbench Command Reference Manual".
- Diaog
- "Code" tab in breakpoint setting dialog
Refer to "4.6.4 Breakpoint" in "SOFTUNE Workbench Operation Manua".
e Window
- Source window/disassemble window

Refer to "3.7 Source Window" or "3.9 Disassemble Window" in "SOFTUNE Workbench Operation
Manual".

Notes:
« When setting a code break (software) in a flash memory area, the contents of the flash memory at
the specified address is temporarily rewritten. For details, refer to "2.6.5 To Access the Flash
Memory".

« When the debugger has aborted in the state where the code break (software) is set, the contents of
the flash memory can be abnormal. For details, refer to "2.6.2 Ending debugging".

296

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.6.3 Data Break

This function suspends program execution when data access (read/write) is made to a
specified address.

B Data Break
This function suspends program execution when data access (read/write) is made to a specified address. Up
to 8 points can be set.
When the data break occurs, the following message appears in the status bar.
Break at [Address] by data event break
B How to set
Control the data break in the following methods:
e Command
- SET DATABREAK
Refer to "3.9 SET DATABREAK (type 1)" in "SOFTUNE Workbench Command Reference Manual".
- Diaog
- "Data' tab in the breakpoint setting dialog
Refer to "4.6.4 Breakpoint” in "SOFTUNE Workbench Operation Manual".

Notes:

« A data break shares points with the following functions. The maximum number varies depending on
how those functions are used.
- Code break
- Data watch break
- Sequence

« The data break may stop after a few instructions following the instruction with detection access are
executed.

« A data access in the string instruction is optimized in the chip. Therefore, the data break may not be
detected in the specified condition.

e The data break may stop the program execution after a few instructions following the instruction
with detection access are executed.

297

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.6.4

Forced Break

This function forcibly suspends program execution.

B Forced Break

This function forcibly suspends program execution.

When the forced break occurs, the following message appearsin the status bar.

Break at [Address] by command abort request

B How to Generate
A forced break is generated in the following methods:

Menu
[Debug] - [Abort] menu
Refer to "4.6.2 Abort" in "SOFTUNE Workbench Operation Manual".
Command
- ABORT
Refer to "2.4 ABORT" in "SOFTUNE Workbench Command Reference Manual".

B When a User Program does not Stop

In any one of the following, even when the forced break is caused to occur, the user program may not stop.
Solutions are described below.

The communication speed of the debugger islow.

[Phenomenon] When the communication speeds of the debugger is low, it can take time to receive a
program stop reguest.

[Solution] Await for some time until receipt of the stop request is completed.

Theinterrupt level islow.

[Phenomenon] When the interrupt level of the program stop request is low, the interrupt is masked by the
CPU interrupt level (ILM).

[Solution 1] Alter the interrupt level of the stop request, and issue a stop request again.
[Solution 2] Issue a program forced-stop request.

The debugger isin power-on debugging.

[Phenomenon] It is considered that the debugger isin power-on debugging.

[Solution] Cancel the power-on debug mode.

The MCU isin ahang-up state.

[Phenomenon] It is considered that the MCU isin a hang-up state.

[Solution] Issue areset.

Note:

If the forced break is performed in CPU pause state a break occurs after that mode is released.

For more details, see "Appendix C. Debugger Suspension Messages" in "SOFTUNE Workbench
Command Reference Manual".

298

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.6.5 Data Watch Break

This special break function suspends program execution when the program reaches a
specified instruction address while the value in the specified data address matches with

specified data.

B Data Watch Break
This special break function suspends program execution when the program reaches a specified instruction
address while the value in the specified data address matches with specified data. Up to 2 points can be set.

The following message is displayed in the status bar, when a data watch break occurs.

Break at address by breakpoint (data watch)
The break conditions for the data watch break areillustrated in the Figure 2.6-3.

Figure 2.6-3 Break Conditions for Data Watch Break

Program flow Datawatch
Specified
instruction
address >
When data does not match,
no break occurs.
Specified
instruction
address } Data match
When data matches,
abreak occurs.

\/

B How to set
Control the data watch break in the following methods:

@® Data watch break

¢ Command

- SET BREAK/DATAWATCH
Refer to "3.3 SET BREAK (type3)" in "SOFTUNE Workbench Command Reference Manual".

« Didog
- "Code" tab in the breakpoint setting dialog
"Hardware/data watch"
Refer to "4.6.4 Breakpoint” in "SOFTUNE Workbench Operation Manual".

299

CHAPTER 2 DEPENDENCE FUNCTIONS

Notes:

A data watch break shares points with the following functions. The maximum number varies
depending on how those functions are used.

- Code break
- Data break
- Sequence

The data watch break may stop if it hits a specified address after a few instructions following the
instruction with data detection access are executed. Consequently, it may not stop if it hits the
specified address during the execution of an instruction.

If the instruction address of the data watch break is set to the string instruction, the program
execution may not stop as expected.

300

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.6.6 Sequencer

A sequencer is a function to abort the program execution to the specified event condition
when program passes the event following a certain flow (sequence).

B Control by Sequencer
Table 2.6-2 shows the specifications of the sequencer function for this emulator debugger.

2 events are set and the level is passed through level 1 to level 2 in this order. This becomes sequencer
termination condition. This sequencer is called a 2-level sequencer.

Furthermore, pass information up to that point is reset and an event for restart which monitors the passage of
level 1 againg can be set.
B Operation of Sequencer
When events are set to each level as shown in example, the sequencer operates as shown in Figure 2.6-4.
[Example]
Level 1 : Event 1
Level 2 : Event 2
Restart : Event 3

Figure 2.6-4 Operation of Sequencer

{ Program execution start J

EmEmml La/el lllllllllllllll EEEEEEEEEEEEEEENEEEEEEEEEEEE

NO
Event 1 occurs

YES

YES

Event 3 occurs

NO

EmEmml Levd 2IIIIIIIIIIIIII EEEEEEEEEEEEEENEENEEENEEEEEEE

NO
Event 2 occurs — |

YES

4

)

301

CHAPTER 2 DEPENDENCE FUNCTIONS

B Specifications of Sequencer
Table 2.6-2 shows the specifications of the sequencer for this emulator debugger.

Table 2.6-2 Specifications of Sequencer

Function Specification
No. of levels 2levels
Restart function Available (one)
Conditions of each | Address
event Pass count: 1 to 1048575
(Code/data) Attribute: Read/write

Data size: Byte, Word, Long
(Attribute and data size can be specified only for data events.)

Operation when Level 1: Movesto level 2
conditionsaremet | Level 2: Terminates the sequencer
Restart: Starts the sequencer

B How to set
Control the sequencer in the following methods:

@® Sequencer

« Diaog
- Select [Debug] - [Sequence] menu.
For details, refer to "4.6.6 Sequence” in "SOFTUNE Workbench Operation Manual”.
e Command
1. The event is set according to the SET EVENT command.
2. The event set by the SET SEQUENCE command is set as a sequence.

For details, refer to "3.22 SET EVENT(type 2)" or "3.28 SET SEQUENCE (type?)" in "SOFTUNE
Workbench Command Reference Manual".

302

CHAPTER 2 DEPENDENCE FUNCTIONS

Notes:

When the pass count mode is a passing count break mode, this function cannot be used.
For detalils, refer to "2.6.3.2 Switching Debug Function".

Depending on the output timing of external trace data, the actual order of code execution may
change places with the order of data hit information. For this reason, if a code event and a data
event occur close to each other, normal transition may not occur.

A sequencer shares points with the following functions. The maximum number varies depending on
how those functions are used.

- Code break
- Data break
- Data watch break

If a data event is set to the sequencer, the data event may stop after a few instructions following the
instruction with detection access are executed.

If an event of the sequencer is set to the string instruction, the sequencer may not operate as
expected by the following reason.
- In code event
The pass count may be added several times by one instruction execution.
- In data event
A data access in the string instruction is optimized in the chip.

303

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.7

Measuring the Program Execution Cycle Count

This section explains the function of measuring the number of program execution cycles.

B Measurement ltems
This function measures the number of program execution cycles.

The measurement is performed whenever a program is executed, and the measurement result displays the
following two values:

- The number of execution cyclesfor the previous program execution
The maximum number of cycles that can be measured is "2 to the power of 58 - 1", in other words, up
to 288,230,376,151,711,743 cycles.

- Thetotal number of execution cycles after the previous clear operation

The maximum number of cycles that can be measured is "2 to the power of 64 - 1", in other words, up
to 18,446,744,073,709,551,615 cycles.

B Displaying Measurement Results
Either of the following methods can be used to display the measurement results.

Display by dialog
The results appear in the time measurement dialog, which can be displayed by selecting [Debug] — [Time
M easurement] menu.

For details, refer to Section "4.6.8 Time Measurement” in " SOFTUNE Workbench Operation Manual™.
Display by command

Enter the SHOW TIMER command in the command window.

For detalls, refer to Section "4.27 SHOW TIMER" in " SOFTUNE Workbench Command Reference Manua™.

B Clearing Measurement Results
Either of the following methods can be used to clear the measurement results.

Clearing by dialog

Click the [Clear] button in the time measurement dialog, which can be displayed by selecting [Debug] —
[Time Measurement] menu.

For details, refer to Section "4.6.8 Time Measurement” in "SOFTUNE Workbench Operation Manual".

Clearing by command

Enter the CLEAR TIMER command in the command window.
For detalls, refer to Section "4.28 CLEAR TIMER" in " SOFTUNE Workbench Commeand Reference Manud".

B Error Information

Click the [Comment] button in the time measurement dialog to display error information about the
measurement results.

304

CHAPTER 2 DEPENDENCE FUNCTIONS

Notes:

« The number of cycles measured normally includes an error of about 10 cycles. However, it may be
even more, depending on the bus state.

« If a chip reset is issued during debugging, the measurement cycle count is cleared.

305

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.8 Measuring Event-to-Event Execution Cycle Count
[Performance Measurement]

This section explains how to measure the execution cycle count between two events in
the MB2100-01 emulator debugger.

B Performance Measurement
This emulator debugger measures the execution cycle count between two events, which the system has
passed while a user program is running. Thisis referred to as " performance measurement".
The features for the performance measurement are as follows.
* Measuring the cycle count required to carry out the event-to-event execution
« Measuring up to 65535 times, using an event-to-event measurement as one cycle
« Thealowable number of intervalsisonly oneif oneinterval is required between two events.
« Accumulating the measurement result and obtaining the average value based on the measuring count

The following shows the performance measurement image.

Measuring up to 65535 times

/ N
Start execution (1 (

TS

Stop execution

Start Stop
[:] It measuring C] Not possible to measuring

B Measurement Items
The measurement items for the performance function are as follows.

Cycle count : Accumulates the number of cyclesrequired to carry out the event-to-event execution.
Measuring count : Accumulates the number of times the system passes from event to event.
Average : Average obtained by dividing the cycle count by the measuring count

B Remeasuring
Remeasuring performance refers to a function that clears the measuring count during execution of a user
program and remeasures from the beginning.

To carry out remeasuring, select [Restart] in the shortcut menu of the performance window.
If necessary, you can respecify the performance measuring interval (event) during execution.

This restarts measuring at the times when events have been set.

306

CHAPTER 2 DEPENDENCE FUNCTIONS

Notes:

« This function is not available when the execution time mode is set to the time measuring mode. For
details, refer to Section "2.6.3.2 Switching Debug Function".

< If two triggers (start and end) specified as a measuring interval have occurred at the same time,
performance measuring is not performed.

« An error of approximately 10 cycles is always detected each time a user program is re-executed
because its execution has been stopped due to a breakpoint during performance measurement.
The error may exceed 10 cycles depending on the bus state.

« If the performance measurement interval (event) is re-specified during execution of a user program,
the previous measurement results are cleared.

307

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.8.1 Measuring Performance

This section explains how to measure the event-to-event execution cycle count in the
MB2100-01 emulator debugger.

B Measuring Procedure
Use the following steps to measure the performance.

1. Specify the performance measuring interval.

2. Execute the measurement.

3. Display the measurement resullt.
Each of these steps can be executed in two methods: using GUI (window or dialog) and using only the
command. In both methods, the same measurement result is obtained.

® Using GUI for measuring

1. Display the performance window.
- Select [View] - [Performance] menul.
For details, refer to Section "3.18 Performance Window" in "SOFTUNE Workbench Operation
Manual".

2. Specify the performance measuring interval.
- Right-click on the performance window, and select [Setup] from the shortcut menu. The performance
setting dialog appears.
Here, click the [Display Range] tab to specify the interval in which performance is to be measured. For
details, refer to Section "4.4.14 Performance” in "SOFTUNE Workbench Operation Manual".
3. Execute user programs.
4. Display the measurement result.
- Right-click on the performance window, and select [Refresh] from the shortcut menu. The performance
measurement result appears.

308

CHAPTER 2 DEPENDENCE FUNCTIONS

® Using Command for Measuring

1. Specify performance events.
- Executethe SET EVENT command.
For details, refer to Section "3.22 SET EVENT(type 2)" in "SOFTUNE Workbench Command

Reference Manual".
2. Specify the performance measuring interval.

- Execute the SET PERFORMANCE command.
For details, refer to Section "4.9 SET PERFORMANCE (type 3)" in "SOFTUNE Workbench

Command Reference Manual".
3. Execute user programs.
4. Display the measurement result.
- Execute the SHOW PERFORMANCE command.
For details, refer to Section "4.11 SHOW PERFORMANCE(type 1)" in "SOFTUNE Workbench
Command Reference Manual".

B Ending the Measurement
The performance measurement is ended in one of the following cases.

« The measuring count has reached 65535.
e A user program has stopped during measurement.

Notes:

e If [Refresh] is selected in the performance window during performance measuring, only the
measuring count appears.

* Whether the performance measurement is currently being continued can be checked using the
built-in variable "%GET_PERFORMANCESTATE".
Refer to "14.25 %GET_PERFORMANCESTATE" of "SOFTUNE Workbench Command
Reference Manual" for details.

e If the starting event and ending event of the performance measurement is set to the string
instruction, the event is not detected correctly and the performance measurement may not operate
as expected.

309

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.9 Viewing Program Execution History [Trace]

This section describes the trace function of this emulator debugger.

B What is Trace
The function that records the program execution history is called "trace".

Trace data contains address information before and after branch, which is available for the analysis of the
program execution history.

B Trace Functions
This emulator debugger has the following trace functions.

« Forced start: Forcibly starts acquiring trace data without stopping the execution of a user program
while forced stop is executed and trace data acquisition is stopped.

« Forced stop: Forcibly ends acquiring trace data without stopping the execution of a user program
during acquisition of trace data.

B Acquiring Trace Data
The trace data acquisition is started and ended at the following times.

® The acquisition is started when:

- auser program has been executed; or

- the[Start] menu has been selected when a user program has been executed.

@® The acquisition is ended when:

- auser program has been stopped; or
- the [Abort] menu has been selected during trace data acquisition.
B Trace Buffer
A placeto store recorded datais called a "trace buffer".
Each unit of data stored in the trace buffer is called a"frame".
The trace buffer can contain up to 1,024 frames.

The trace buffer has aring-like structure. If the trace buffer becomes full, it is automatically overwritten from
the beginning.
Figure 2.6-5 shows how datais stored in the trace buffer.

310

CHAPTER 2 DEPENDENCE FUNCTIONS

® When break halts program execution

Figure 2.6-5 Acquiring Trace Data
When a break occurred during execution of a program

Start execution Stop execution Start execution Stop execution

| | | |

Program flow

Trace Buffer

Note:
Executing the forced start will clear the trace data that was stored until then.

311

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.9.1 Displaying Trace Data

This section explains how to display trace data.

B Display Formats of Trace Data
The following three formats can be used to display trace data.

RAW data: Displays trace data without analyzing it.
Instruction: Displays trace datain the order in which instructions are executed.
Source; Displays trace data on a source line basis.

B Trace Data Display Position
Sampled trace datais numbered by frame. This number is called a"frame number".
When displaying trace data, the starting location in the trace buffer can be specified using the frame number.
Ordinarily, the last sampled trace datais assigned to frame number 0.
B How to Display Trace Data
Trace dataiis displayed in the trace window or command window.

The following two display methods are available, both of which enable you to obtain the same resuilt.

@® Using trace window

1. Display the trace window.
- Select [View] - [Trace] menu.
2. Select the display mode of the trace window.

- Right-click on the trace window, and select [RAW datd], [Instruction], or [Source] from the shortcut
menu.

For details, refer to Section "3.14 Trace Window" in "SOFTUNE Workbench Operation Manual".
3. (If the trace window is aready displayed), update trace data.

- Right-click on the trace window, and select [Refresh] from the shortcut menu. Trace data is updated in
the trance window.

For details, refer to Section "3.14 Trace Window" in "SOFTUNE Workbench Operation Manual".

312

CHAPTER 2 DEPENDENCE FUNCTIONS

® Using command window

1. Display trace data for each display mode.
RAW data: SHOW TRACE
Instruction: SHOW TRACE
Source: SHOW TRACE

For details, refer to Section "4.32 SHOW TRACE (type 2)" in "SOFTUNE Workbench Command
Reference Manual".

Note:

In the disassembly format, data is read from memory to be displayed. If an instruction is rewritten after
code fetching, data will not be displayed correctly.

313

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.9.2 Trace Data Display Examples (RAW Data)

This section describes trace data that is displayed in the RAW data mode.

B RAW Data Display
Thisformat displays frames that are output from the emulator without analyzing them.

Figure 2.6-6 shows a RAW data display example.

Figure 2.6-6 Example of the RAW Data Display

Indicates instruction executed.

/ — Jump address

’rDisassemble Description—‘

Frame Number
rDecimaI, signed —|

\ >SHOW TRACE /RAWDATA -10 Hexadecimal Branch
frame no. address mnemonic dest|nat|or_1 addre_ss

\ -00010: FFOOEL RETI-> FFO10E / of branch instruction
-00009: FFOl1lF BRA FFO10E -> FFO10E |
-00008: FFO10E MOVW A,0190 ->FFOOCE [INT] Interrupt
-00007 : FFOOE1l RETI-> FFO10E _
-00006: FFOl1lF BRA FFO10E -> FFO10E Branching by hardware
-00005: FFO10E MOVW A,0190 ->FFOOCE [INT] | 'Mterrupt

-00004: FFOOEl1 RETI-> FFO10E
-00003: FFO11F BRA FFO10E -> FFO10E
-00002: FFO10E MOVW A,0190 ->FFOOCE [INT]
-00001: FFOOEl RETI-> FFO10E

00000 : ==== << Break at FF01‘1§ >> =====

Special frame
~~] Break at"address" : —‘

program execution is stopped.

frame no.

Displays frame numbers in decimal notation.
address

Displays abranch address.
Branch destination address = 110C6:"-> 000110C6"
Branch source address = 110A8:"000110A8 ->"
mnemonic

Displays the instructions that are executed.

314

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.9.3 Trace Data Display Example (Instruction)

This section describes trace data that is displayed in the instruction mode.

B Instruction Display
This mode displays the branch addresses of the RAW data display in disassembly format. Figure 2.6-7 shows
an instruction display example.

Figure 2.6-7 Example of the Instruction Display

Display that supplements
between branch frames.

’rDisassemble Description—‘

Frame Number
(Decimal, signed —‘

— Jump address
\ >SHOW TRACE /RAWDATA -2400 Hexadecimal Branch
frame no. address mnemonic destination address
\ sample.c$39 } of branch instruction
- 00003 : FFO11F BRA FFO10E -> FFO10E
sample.c$36 while (flag2) {
- 00002 : FFO10E MOVW A,0190 ->FFOOCE [INT] | Interrupt
sample.c$14 { p
YExtInt: Branching by hardware
: FFOOCE LINK #00 ‘\{'nterrum
: FFOODO PUSHW RWO
sample.c$15 *((char __io*)0x59) =0;
: FFOOD2 MOV A#59
FFOOD4 MOVW RWO,A
FFOOD5 MOVN A#0
FFOOD6 MOV @RWO,A

frame no.
Displays the frame number in decimal form.
address
Displays the branch addresses.
mnemonic
Displays disassembly of the instructions that are executed between branch addresses.

Note:
For branch addresses (b-addr), an instruction between the branch addresses is extracted to get the
frames to complement each other by disassembly. When they are complemented, the frame number
field is blank.

315

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.9.4 Trace Data Display Example (Source)

This section describes trace data that is displayed in the source line mode.

B Source Display

This mode displays only source lines. Figure 2.6-8 shows a source display example.

Figure 2.6-8 Example of the Trace Data Display (Source)

>SHOW TRACE/SOURCE -10..-5
frame no. source
: sample.c$61 if (p->val >= tblp]j - 1]->val)
-00007 : sample.c$62 break;
: sample.c$66 tblp [i - 1] = p;
-00006 : sample.c$67
: sample.c$53 while (max > 1) {
sample.c$54 p = tblp [max - 1];
sample.c$55 tblp [max - 1] = tblp[O];
sample.c$56 max--;
sample.c$57 i=1,

frame no.

Displays frame numbers as decimal humber.
source

Displays the source line to be executed.

316

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.9.5 Saving Trace Data

This section explains how to save trace data.

B Saving Trace Data
Trace data can be saved in a specified file.

The following two methods are available to save trace data: using GUI (window or dialog) and using only the
command. The same result is obtained from both methods.

® Using GUI for Saving Trace Data

1. Display the trace window.
- Select [View] - [Trace] menu.
2. Specify the name of the file in which to save trace data.
- Right-click on the trace window, and select [Save] from the shortcut menu. The [Save as] dialog

appears.
Specify the file name and where to save trace data. For details, refer to Section "4.4.8 Trace" in

"SOFTUNE Workbench Operation Manual".

® Using Command for Saving Trace Data

1. Savetrace data.
- Execute the SHOW TRACE/FILE command.
For details, refer to Section "4.33 SHOW TRACE (type 3)" in "SOFTUNE Workbench Command
Reference Manual".
When additionally saving trace data in an existing file, execute the SHOW TRACE/FILE/APPEND

command.

317

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.9.6 Searching for Trace Data

This section explains how to search for trace data.

B Searching for Trace Data
The specified address or frame number in trace data can be displayed.

The following two methods are available to search for trace data: using GUI (window or dialog) and using
only the command. The same result is obtained from both methods.

@® Using GUI for Searching for Trace Data

1. Display the trace window.
- Select [View] - [Trace] menu.
2. Specify the address or frame number to search for trace data.
- Right-click on the trace window, and select [Find] from the shortcut menu. The trace data search dialog

appears.
Specify the address or frame number to be displayed. For details, refer to Section "4.4.8 Trace" in

"SOFTUNE Workbench Operation Manual".

® Using Command for Searching for Trace Data

1. Search for trace data
- Execute the SEARCH TRACE command.
For details, refer to Section "4.37 SEARCH TRACE" in "SOFTUNE Workbench Command Reference
Manual".

Note:
Trace data can search only branching source address.

318

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.10 How to Display the Output Message from User Program to
the Debugger

This section explains the semihosting feature of MB2100-01 emulator debugger.

B What is Semihosting Feature

The semihosting feature is a function to display a message output by the user program on the debugger
window.

As shown in Figure 2.6-9, when receiving an output request to the message buffer register (MBR) on debug
1/0, the debugger displays the output content on the window by receiving the content.

In this case, data from the user program to the debugger is output via DEBUG I/F from MBR according to
the arrow in Figure 2.6-9.

For details of on-chip debugger (OCD) and MBR, refer to the hardware manual.

Figure 2.6-9 Data Flow in Semihosting Feature

User Target
SOFTUNE

Workbench
User Programme

USB

DEBUG I/F

- /

B What is Terminal Window

Terminal window is the window displaying data when receiving an output request from user program to
MBR. Refer to section "3.22 Terminal Window" of "SOFTUNE Workbench Operation Manual" for details of
terminal window.

The data output to the termina window is interpreted and output as ASCII characters. However, the
supported control characters are'\n', '\r' and '\t'. The other control characters and the characters after 0x80 are
output as'..

The terminal window will appear when the data to be displayed is acquired.

319

CHAPTER 2 DEPENDENCE FUNCTIONS

B Using Method of Semihosting Feature
Use the following procedure to display the content of the output request to MBR on the terminal window.
1. Control MBR in the user program.
Asshown in Figure 2.6-9, it is necessary to control MBR in the user program.
Sample project including the control method of MBR is attached in SOFTUNE Workbench V30L36 or

later. Control MBR based on this. For details, refer to "TAPPENDIX J Sample Project for Semihosting
Feature" in "SOFTUNE Workben ch Operation Manual".

2. Display the content of the output request to MBR on the terminal window.
Use the following method to display the terminal window.
The following two methods are available to display the content of the output request: using GUI (window)
and using the command. The same result is obtained from both methods.
¢ Display by window
- The content is displayed in the terminal window selected by [View] - [Termina] menu. For details,
refer to section "3.22 Terminal Window" in "SOFTUNE Workbench Operation Manual”.

» Display by command
- Enter the SET LOGGING/TERMINALWINDOW command in the command window. For detalls,
refer to section "11.1 SET LOGGING" of "SOFTUNE Workbench Command Reference Manual”.

320

CHAPTER 2 DEPENDENCE FUNCTIONS

2.6.11 Checking Debugger Information

This section explains how to check information about the MB2100-01 emulator debugger.

B Debugger Information
This emulator debugger enables you to check the following information at startup.
* SOFTUNE Workbench file information
e Hardware information
If any errors have been discovered during SOFTUNE Workbench operations, check this information and
contact our sales department or support department.
B How to Check
Use one of the following methods to check debugger information.

¢ Command
- SHOW SYSTEM
Refer to Section "1.19 SHOW SY STEM" in "SOFTUNE Workbench Command Reference Manual”.
« Didog

- Version information dialog
Select [Help] - [Version Information] menu.
For details, refer to Section "4.9.3 Version Information” in "SOFTUNE Workbench Operation
Manual".

B Displayed Contents

F2MC- 16 Family SOFTUNE Wor kbench VxxLxx
ALL RI GHTS RESERVED,
COPYRI GHT(C) FUJI TSU SEM CONDUCTOR LI M TED 1997
LI CENCED MATERI AL -
PROGRAM PROPERTY OF FUJI TSU SEM CONDUCTOR LI M TED

Cpu information file path: CPU information file path
Cpu information file version: CPU information file version

Add in DLLs

Si Cm

Product nane: SOFTUNE Wor kbench

File Path: SiC907.dll path

Version: SiC907.dll version

Sii Ed

File Path: SiiEd3.ocx path

Version: SiiEd3.ocx version

Si MB07

Product nane: SOFTUNE Wor kbench

File Path: SiMO07.dll path

Version: SiMO07.dll version

Language Tool s

- F2MC-16 Fanmily SOFTUNE C Conpil er version
File Path: fcc907s.exe path

- F2MC-16 Fanmily SOFTUNE Assenbl er version
File Path: fasnP07s.exe path

- F2MC-16 Family SOFTUNE Linker version
File Path: flInk907s.exe path

- F2MC-16 Fanmily SOFTUNE Librarian version
File Path: flib907s.exe path

- SOFTUNE FJ-OMF to S-FORMAT Converter version
File Path: f2ns.exe path

- SOFTUNE FJ- OMF to | NTEL- HEX Converter version
File Path: f2is.exe path

- SOFTUNE FJ- OMF to | NTEL- EXT- HEX Converter version
File Path: f2es.exe path

321

CHAPTER 2 DEPENDENCE FUNCTIONS

322

- SOFTUNE FJ-OMF to HEX Converter version

File Path:

f2hs. exe path

Si GsM
Product nane:

Sof t une Wor kbench

File Path: SiGsMB07.dll path

Version: SiCs

MB07.dl | version

F2MC- 16 Series
Product nane:

Debugger DLL
SOFTUNE Wor kbench

File Path: SiD907.dll path

Version: SiD9
Debugger type
MCU type
VCpu dl |l name
VCpu dI | versio
Si DRvVo dIl vers
DSU type
Adapt er version
FPGA ver si on
Maker 1D
CPU fanmily ID
DSU type ID
DSU version I D
Device ID
Devi ce version
OSC cl ock
PLL cl ock
Cl ock node

Communi cati on node

Communi cation d
REALCS ver si on

07.dll version

Current debugger type

Currently selected target MCU
: Path and nane of the currently used VCpu dl|
n : Version of the currently used virtual debugger DLL
ion : Version of the currently used MB2100-01 driver DLL
: Currently used DSU type

Adapter vers
FPGA versi on

ID that indi

ID that indi

ID that indi

ID that indi

: ID that indi

1D : ID that indi

ion

cates
cates
cates
cates
cates
cates

the device manufacturer

the CPU fanily installed in the device

the OCD-DSU installation type.

version information of the DSU installed in the device
devi ce information

devi ce version

Gscil lator frequency
Ref erence clock frequency for high-speed comunication
Cl ock node [Main/ Sub/ PLL]

evice : Device type
: REALCS versi

Communi cat i on node

on

Si | CDef
Product nane:
File Path: Si

Sof t une Wor kbench
| ODef.dll path

Version: SilODef.dll version

Current path:
Language: Curr
Help file path:

Path of the currently used project

ently used | anguage
Help file path

CHAPTER 2 DEPENDENCE FUNCTIONS

2.7 Monitor Debugger

This section describes the functions of the monitor debugger.

B Monitor Debugger

The monitor debugger performs debugging by putting the target monitor program for debugging into the
target system and by communicating with the host.

Before using this debugger, the target monitor program must be ported to the target hardware.

323

CHAPTER 2 DEPENDENCE FUNCTIONS

2.7.1 Resources Used by Monitor Program

The monitor program of the monitor debugger uses the I/O resources listed below. The
target hardware must have these resources available for the monitor program.

B Required Resources
The following resources are required to build the monitor program into the target hardware.

Table 2.7-1 Resources Used by Monitor Debugger

1 UART Necessary For communication with host computer
4800/9600/19200/38400 bps

2 Monitor ROM Necessary Need about 10 KB (For details, refer to link map.)

3 Work RAM Necessary Need about 2 KB (For details, refer to link map.)

4 External-interrupt switch | Option Uses for forced abortion of program. When the
switch is not built-in, the program can stop at the
breakpoint only.

5 Timer Option Usesfor SET TIMER/SHOW TIMER . Needs 32 bits
in 1 usunits.

324

CHAPTER 2 DEPENDENCE FUNCTIONS

2.7.2 Break

In the monitor debugger, two types of break functions can be used. When the program
execution is aborted by each break function, the address and the break factor to do the
break are displayed.

B Break Functions
In this monitor debugger, the following two types of break functions are supported.

» Software break
* Forced break

325

CHAPTER 2 DEPENDENCE FUNCTIONS

2.7.2.1 Software Break

It is a function to bury the instruction for the break under the memory, and to do the
break by the instruction execution. The break is done before an instruction the specified
address is executed.

B Software Break
It is afunction to bury the instruction for the break under the memory, and to do the break by the instruction
execution. The break is done before an instruction the specified address is executed.
The number that can be set is 16 paints.
When a break occurs due to a software break, the following message is displayed on the status bar:
Break at Address by breakpoint
B Setting Method
The software break is controlled by the following method.
* Command
- SET BREAK/SOFT
Refer to "3.1 SET BREAK (type 1)" in "SOFTUNE Workbench Command Reference Manual".
- Diaog
- Breakpoint Set Dialog [Code] tab
Refer to "4.6.4 Breakpoint" in "SOFTUNE Workbench Operation Manual”.
e Window
- Source window/Disassembly window

Note:
There are a couple of points to note when using software breaks.

e Software breaks cannot be set in an area that cannot be written, such as ROM. If attempted, a
verify error occurs at starting the program (when continuous execution, step execution, etc.,
started).

« Always set a software break at the instruction starting address. If a software break is set in the
middle of an instruction, it may cause a program null-function.

326

CHAPTER 2 DEPENDENCE FUNCTIONS

2.7.2.2 Forced Break

It is a function to abort the execution of the program compulsorily.

B Forced Break
It isafunction to abort the execution of the program compulsorily.
When a break occurs due to aforced break, the following message is displayed on the Status Bar.
Break at Address by command abort request

327

CHAPTER 2 DEPENDENCE FUNCTIONS

328

INDEX

INDEX

The index follows on the next page.
This is listed in alphabetic order.

329

INDEX

Index
Symbols
/ICYCLE
Displaying All Machine Cycles (Specify /CYCLE.)
.. 116
/INSTRUCTION
Display in Instruction Execution Order (Specify /
INSTRUCTION.)........ 115, 178, 226, 263
/RAWDATA
Display without Analyzing Trace Data (Specify /
RAWDATA.) ittt 262
/SOURCE
Display in Source Line Units (Specify /SOURCE.)
.................................. 118, 181, 229, 264
Numerics
0 Bank
When referring to RAM area of the 0 bank 192
A
About Log File
About LOg File......ccoooiiiiiiiii e 198
Access
Access Attributes for Memory Areas
.. 71, 144, 209
Accessto Flash Memorycceevevviieeee i, 289
Guarded Access Break........... 48, 84, 158, 218, 246
Memory Area Access Attributes...............ccuueeee. 37
Active Project
ACHVEPrOJECE ...ceeeeiieiiiiee e 2
Active Project Configuration............c.oooecvvviieeenen. 4
Analyzing
Analyzing Include Dependencies.............ccccvvveeee... 9
Attributes
Access Attributes for Memory Areas
.. 71, 144, 209
Memory Area Access Attributes...............cceeeeee. 37
B
Boot ROM
Boot ROM File Automatic Execution........... 35, 236
Break
Break by SeqUeNCer........c.eevveiiiiieeie e 99
Break Functions
.............. 43,79, 152, 214, 242, 293, 325
CodeBreaK..........ccuvveeeeeereevnnnnnn. 80, 153, 215, 243
Code Break (Software)cccovvvvveeeeiiiiieeeennnen 296
DataBreak.......c.cocvvevveieeieeinnnnn. 82, 155, 217, 245
External Trigger Breakcccooccveeeeininn. 161, 250

330

Flow of CodeBreakccccevvvvvvvvvevvnnnvnnnnnnnnn 44
Flow of DataBreak..............cccoevvvvvvvvivvvvnnnnnnnnnnn. 46
Forced Break................ 49, 87, 162, 220, 251, 327
Guarded Access Break 48, 84, 158, 218, 246
Monitoring Data Break..........cccccevveeeeeeeiiiiicnnnns 156
Noteson Code Break...............vvvvvvvnnnee. 44, 80, 215
Noteson DataBreaKccccevvvvvvvvvvvvnvnnnnnnn. 153
Performance-Buffer-Full Break........... 86, 160, 249
Sequential Break.........cccceevvvevieeiiiiiiiiiinne, 83, 157
Software Breakcoooeeevvviiiiiiiiieiiiee e, 326
Specify Performance-Buffer-Full Break
... 123, 185
Specifying Performance-Buffer-Full Break 267
Trace-Buffer-Full Break 47, 85, 159, 219, 248
Build
Build FUNCLION......ccoeiieeiec e, 6
Customize Build FUNCLioNcoeeeeeeiievvieieenns 7
C
C Language
Notes on C Language SymbolS............ccceeeeuvneee. 30
Specifying C Language Variables.........ccccceeeenn. 29
Check
RAM Check Window............coeeveeivieveiieieeeeeene, 196
Clearing
Clearing Performance Measurement Data
... 124, 186, 267
Code
CodeBreaKevvvvvvvvennnniennnn, 80, 153, 215, 243
Flow of CodeBreakcocevvvvveeeeeiiiviieieeeeeenn, 44
Notes on Code BreaK..........cccevvvvveeeennns 44, 80, 215
Code Break
(0000 (2] =] == 294
Code Break (Software)ceeevvvveeeeeiiineeeennnns 296
Command
Commands Available during Execution of User
Program........cccccoeuvveeen. 76, 150, 213, 240
Commands for External Probe Data................... 134
Event-related Commands in Multi Trace Mode..... 93
Event-related Commandsin Normal Mode........... 91

Event-related Commands in Performance Mode ... 95
Notes on GO Command

........................... 74,148, 211, 239, 287
Notes on STEP Command

........................... 75, 149, 212, 239, 287

Commands Available
Commands Available during Execution of User

Program.......ccccoeevveiiiiiiniece e 282
Configuration
Active Project Configuration...............ccccccvvvennnnnn. 4

Project Configurationcccuuviiieeeienieenninnes 3
Control
Control by Sequencercccccveeeeeenne 96, 163, 252
Controlling Watchdog Timer....... 75, 149, 212, 239
Coverage
Coverage Measurement Function......... 57, 126, 188
Coverage Measurement Operation....... 57, 126, 188
Coverage Measurement Procedures...... 57, 126, 188
Displaying Coverage Measurement Result
.. 58,127, 189
Measuring Coveragecceevveeeeneennn. 58, 127, 189
Setting Range for Coverage M easurement
.. 58,127, 189
Creating
Creating and Viewing Memory Map
.. 71, 145, 210
Customize
Customize Build FUNCLION..........coccveeeeiiiiieene, 7
D
Data
Clearing Performance Measurement Data
.. 124, 186, 267
Commands for External Probe Data................... 134
DataNot Traced...........ccovvveeeiinnnnnn. 105, 167, 221
Display without Analyzing Trace Data (Specify /
RAWDATAL) ooieeiieee e 262
Displaying and Setting External Probe Data 134
Displaying Performance Measurement Data
.. 124, 186, 267
Displaying Trace Data Storage Status
.................................. 113, 176, 224, 260
Reading Trace Data On-the-fly.................. 182, 230
Reading Trace Data On-the-fly in Single Trace
.. 119
Reading Trace Data On-the-fly in the Multi Trace
.. 120
Saving Trace Data.............. 56, 121, 183, 231, 265
Setting Data Monitoring Trace Trigger............... 169
Specifying Displaying Trace Data Start
.................................. 114,177, 225, 261
Trace Data.......cceevveeriveeeninenn. 105, 167, 221, 256
Data Break
DataBreakccccvveveenn.n. 82, 155, 217, 245, 297
Flow of DataBreakcoccvvvviveiiieeeee i, 46
Monitoring Data Break.............ccoccveeviiiienennnnen. 156
Noteson DataBreakccccevvvvieeeieneeeninnnnns 153
Data Watch Break
DataWatch Breakccccvviviieieiiiieee e, 299
Debug
Setting Debug Area..........ceevveeeeeeinnne 67,141, 206
Setting of Debug FUNCLioNcoocvveeeiiiiieeene 146
Debug Functions
Debug FUNCLIONS........ccoveeeiiiiiiieiieeeceee e 280

INDEX

Debugger
Debugger Information................. 61, 135, 200, 321
Emulator Debugger..........cooeevvvveveeennnn. 22, 63, 233
Monitor DEbUGQEScceeeeevvviiiiiiiieeeeeeee, 22,323
Operating Condition of High-speed Simulator
(D]= o100 o= SO 32
Simulator DEBUGOEScvvvveeeeeiiiciiiiieeee e, 22,32
Type of DEbUGQET.......ccvviveeieeieee e 22
When the debugger has aborted.......................... 277
Debugging
Ending debugging..........cccceiiiiininiiieieeeeeeeeee, 277
Starting Debugging.........cceeveiiiiiiiiiieeeeeeee, 273
Verification Items When Starting Debugging 273
Debugging Mode
Debugging Mode...........eevvviiiiiinieieeeeenn, 140, 205
Delay
TraCe DEl@y ..ccoooeeieiiiieeee e 172
Disassembly
Disassemblycoouviiiiiiiiie e, 25
Display
Display in Instruction Execution Order (Specify /
INSTRUCTION.) 115, 178, 226, 263
Display in Source Line Units (Specify /SOURCE.)
.................................. 118, 181, 229, 264
Display without Analyzing Trace Data (Specify /
RAWDATA) et 262
Displaying All Machine Cycles.................. 179, 227
Displaying All Machine Cycles (Specify /CYCLE.)
.. 116
Displaying and Setting External Probe Data........ 134
Displaying Coverage Measurement Result
.. 58, 127, 189
Displaying Measured Time................ 125, 187, 268
Displaying Performance Measurement Data
.. 124, 186, 267
Displaying Trace Data Storage Status
.................................. 113, 176, 224, 260
E
Editor
External Editorcceeeeeiiiiiiiiiiieieece e 14
Standard Editoreeevviiieeiiiiiiiiiieee e 13
Emulator
EMUIELON.......ceevieiiiiiieeee e, 137, 202
Emulator Debugger.........ccoovevevvvvveennnn. 22, 63, 233

Emulator Debugger
Features of Emulator Debugger for MB2100-01

.. 272
Error
Error Jump FUNCLIONevveieiiiiiiecee e, 11
ErrorError Information............cccceeeieeiiiiiiien e, 304
Event Mode
EVveNt MOOE ..., 147
Event MOAES.......ccoevvvieeieeieeiee e, 89

331

INDEX

Setting Event Mode..........ccoooeviiiiiiiinnnen. 123, 185

Event-related Commands
Event-related Commands in Multi Trace Mode

.. 93
Event-related Commands in Norma Maode............ 91
Event-related Commands in Performance Mode

.. 95

Example
Example of Optional SettingS.........ccccceveieeinieiennn. 15
Examples of Macro EXpansioncocceveeee. 19
Executing
Executing Program............cccccveuvveen. 124, 186, 267
Trace Control during Executing User Program
.. 169
Execution
Boot ROM File Automatic Execution........... 35, 236
Display in Instruction Execution Order (Specify /
INSTRUCTION.)........ 115, 178, 226, 263
Execution of User Program
Commands Available during Execution of User
Program ... 282
External Editor
External Editor..........cooevieiiiiviiiiieeeieeeeeeeeeen, 14
External Probe
External Probe Sampling Timing........ccccccceeeunne. 133
External Tools
External TOOIS.........ccuveiieiiiiiiieeeeeeeeeee e, 16
External Trigger Break
External Trigger Breakccoccveveennnnn. 161, 250
F
File
About LOg Fil€....cccccooiiiiiiieeeee e, 198
Boot ROM File Automatic Execution........... 35, 236
Flash Memory
Accessto FlashMemorycccocceeiiiiinnns 289
Examples of flash memory synchronization........ 291
Methods of flash memory synchronization.......... 289
What is flash memory synchronization? 289
Flow
Flow of Code Break.............cccoeveiiiiiicinennee 44
Flow of DataBreskcccoovviiiiiiiinene, 46
Sample Flow of Time Measurement by Sequencer
.. 103
Forced Break
Forced Break
.............. 49, 87, 162, 220, 251, 298, 327
Format
Display Format of Trace Data.............ccceeveriunneen. 54
Project FOrmatoovouveeeeiiiiieeieiiee e 3
Frame
Frame NUMbBErccoeeeiiiiiiee e 52
Frame Number
Frame Number........ccccooeeevviviiieieennns 167, 221, 256

332

Frame Number and Step Number in Single Trace

... 107
Multi Trace Frame Number...........cccccevvvvvvvvnnnnn 110
Function
Break Functions........... 43,79, 152, 214, 242, 325
Build FUNCLION.......ccoiiiiiii e, 6
Coverage Measurement Function 57,126, 188
Customize Build FUnctioncccoeeeeeviiiiinnnnnns 7
Error Jump FUNction ..., 11
Function of Setting Tool Options...........cccccvvneene. 10
Function of Single Trace............ccevvvvvevvvvivnnnnnnn. 106
Functions for Memory Operations..............cccc..... 23
Make FUNCLION........cooviiiiiieeceee e, 6
Multi Trace FUNCLION.........coovvieeeieeeiee e 110
Performance M easurement Function
... 122, 184, 266
Project Management FUNCtioNcccceevviiieeeens 3
Setting of Debug FUNCLIONcoovveeeiiiiiieeeee 146
STUB FUNCHION.....cvviiiiiieiiie e 42
Workspace Management Function.............cccce....... 2
G
GO
Notes on GO Command
........................... 74,148, 211, 239, 287
Guarded Access Break
Guarded Access Break 48, 84, 158, 218, 246
H
High-speed Communication
Standard Clock Frequency for High-speed
CommMUNICAioNueveeieeiieeee e, 279
How to enter
Howto enter.......c.oooviiiiiiiei e 276
How to Generate
How to Generate............oeeeveviiiiiieiiieeeeee 298
|
I/0 Port
1/0 Port Simulation (Input Port)ccccvveeeee.. 38
1/0 Port Simulation (Output Port)............cccvveeeee. 38
Instructio
Instruction Displaycoocvvviiiieeiieeeeees 315
Instruction
Display in Instruction Execution Order (Specify /
INSTRUCTION.) 115, 178, 226, 263
Instruction SIMUlationccceeeeeeeiivieeeeeeeeene, 36
Interrupt
Interrupt Simulationooevvvvvvviiviinn, 39
L
Line Assembly
Line ASSembIY......coooiiiiiiii e 25

Line Number

Line Number Information.............ccccceeeeeiinninnns 27
List
= o (ol I E 7,17
SpecificationNS List........eeeeeiiiiieeiiiiiiiee e 197
Low-Power Consumption Mode
Low-Power Consumption Mode Simulation 41
M
Machine Cycles
Displaying All Machine Cycles.............ccccc...... 179
Macro
Examples of Macro Expansion............cccceeevenee. 19
Y=ol (o 3 = 7,17
MaACTOS. ..ot 17
Make Function
Make FUNCLION.ueiiiiiiiiiiiiiecee e 6
MB2100-01
Features of Emulator Debugger for MB2100-01
.. 272
MCU
MCU Operation Speedooovvcvvvvvvieeeieeeeennnn, 66
Setting MCU Operation Mode
.................................... 65, 140, 205, 237
Measurement
Clearing Performance Measurement Data
.. 124, 186, 267
Coverage Measurement Function......... 57,126, 188
Coverage Measurement Operation....... 57,126, 188
Coverage Measurement Procedures 57, 126, 188
Displaying Coverage Measurement Result
.. 58, 127, 189
Displaying Performance Measurement Data
.. 124, 186, 267
Ending the Measurementccccceevveeeennnn 309
Performance Measurement Function
.. 122, 184, 266
Sample Flow of Time Measurement by Sequencer
.. 103
Setting Minimum Measurement Unit for Timer
.. 123, 185, 267
Setting Range for Coverage Measurement
.. 58, 127, 189
Setting Timer Minimum Measurement Unit.......... 73
Time Measurement by Sequencercc.ueee.. 102
Measurement ltems
Measurement ItemMS.........ccccoveviiiiieee, 304
Measurement REeSUISccccovveiviieiicieneee 193
Clearing Measurement Results
.................................... 51, 131, 232, 304
Displaying Measurement Results
.................... 50, 131, 193, 232, 269, 304

INDEX

Measurement ResultsClearing Measurement Results

... 269
Measuring
Measuring Coverage........cccvvvvvnnnnnnnnn. 58, 127, 189
Measuring Item
Measurement Items............. 50, 131, 193, 232, 269
Memory
Access Attributes for Memory Areas
.. 71, 144, 209
Creating and Viewing Memory Map
.. 71, 145, 210
Functions for Memory Operations........................ 23
Memory Area Access Attributescccuvveee. 37
Memory AreaTYPES....ccovvvvvvevviinieeeens 68, 142, 207
Memory SIMUIELIONevvvveiiiiiieee e 37
Read/Write Memory while On-the-fly 77
Simulation Memory SPace..........cccveveviiiveeeeennnnn. 37
Method
Setting Method..........cccoeeviviveeennnee, 42,44, 46, 47,
80, 82, 83, 85, 86, 153, 155, 156, 157,
159, 160, 161, 215, 217, 219, 243, 245,
246, 248, 249, 250, 326
Setting Methods of Multi Trace..........ccceeeeeeeeenn. 174
Minimum Measurement Unit
Setting the Minimum Measurement Unit............. 131
Mode
Debugging Mode...........cooviiiiiiiiieieiaaeenn. 140, 205
Event Modeooovvvvviiiiiciecn e 147
Event MOES.........oovvvviiiiiiiiciece e 89
Event-related Commands in Multi Trace Mode......93
Event-related Commandsin Normal Mode............ 91
Event-related Commands in Performance Mode
.. 95
L ow-Power Consumption Mode Simulation.......... 41
Native Mode..........ooevvvviiiiiiiiiiiiiiiieeee e, 140, 205
Operation in Multi Trace Mode............ccccvveeeennen. 92
Operation in Normal Mode...........cccceevviiierennnen. 90
Operation in Performance Modeccccceeeeeennee 94
RAM Checker Mode...........cooociiviiiiiiiiiiieeeiee 146
Setting Event Modecoooeeeeeiiiiiiiiiieee. 123, 185
Setting MCU Operation Mode
.................................... 65, 140, 205, 237
Trace Enhancement Mode.............cccccvvvveeeennnnn. 146
Monitor
Monitor DEDUGJESccevvvreeieeiiiiieeeeiiiieean 22,323
Monitoring Data Break.............ccccueveeiiiineeennnnne. 156
Monitoring Program Automatic Loading
.. 204, 235
Monitoring
MONITOFING ..ttt 284
Moving
MOVING SCOPE....cuvveiieeiiiiiee et 28
Multi Trace
Event-related Commands in Multi Trace Mode
.. 93

333

INDEX

MUILE TraCe. ... 171
Multi Trace Frame Number 110,171
Multi Trace FUNCLioN ... 110
Operation in Multi Trace Modeccceeeeeenenne 92
Setting Methods of Multi Trace.........ccccceeeeennne. 174
Setting MUlti Trace......coovveeeiiiiiiiiiieeeeeeeeeee 112
N
Native Mode
Native MOode........ccovvvveieieiiiieeeeeeeeen, 140, 205
Normal Mode
Event-related Commandsin Normal Mode............ 91
Operation in Normal Mode...............ccoeeeeeeennnnnnn. 90
Notes
Notes on C Language Symbols...........cccceeviinnenn. 30
Noteson Code Break...........cccocvveeeenne 44, 80, 215
Noteson DataBreak..........ccccoccvveeeeiiiiieneennninnen. 153
Notes on GO Command
............................ 74,148, 211, 239, 287
Notes on STEP Command
............................ 75, 149, 212, 239, 287
Number
Frame NUMbErcoeevviiiiiieeeeees 167, 221, 256
Frame Number and Step Number in Single Trace
.. 107
Line Number Informationcccccevveveeeiiriinnnnns 27
Multi Trace Frame Numberu..... 110,171
Setting NUmber ... 156
@]
On-the-fly
Read/Write Memory while On-the-fly 77
Reading Trace Data On-the-fly 182, 230
Reading Trace Data On-the-fly in Single Trace
.. 119
Reading Trace Data On-the-fly in the Multi Trace
.. 120
Operating
Operating Condition of High-speed Simulator
Debugger.....c.ovvviiiiiie 32
Operating ENvironment...........coocvveeeeiiieeeeeenenn. 21
Operating of SeqUENCES..........ccovvuieeeeiiiiieeeenis 254
Setting Operating Environment
.............................. 34, 64, 138, 203, 234
Operating Environment
Setting Operating Environment...........ccccceeeeenne. 278
Operating Environments
Operating Environments of the Target................ 274
Operation
Coverage Measurement Operation........ 57, 126, 188
Functions for Memory Operations................c....... 23
MCU Operation Speed.........cccovcveeeeeiiiieeeeennnnnn 66
Operation freqUENCYcvveeeeiiiieeee i 238
Operation in Multi Trace Modeccevvveeeerennns 92

334

Operationin Normal Mode..........ccccoevviieieennnnen. 90
Operation in Performance Mode..........cccccceveennn. 94
Register Operations...........coovcvvveeeeiiiieeeeniiineeen 24
Setting MCU Operation Mode
................................... 65, 140, 205, 237
Operation Requirements
Operation Requirements............cccvvvveeeeeeeeeennnn. 296
Options
Function of Setting Tool Options...........cccoevvveee. 10
Setting OptioNS.........vvveeeeeiieeeeeeiiiiiiiieen, 7,14, 16
TOOl OPLIONS ...cvveeeeeeieciiiieee e 10
Output Port
1/0 Port Simulation (Output Port)ccccuveee... 38
P
Performance
Clearing Performance M easurement Data
... 124, 186, 267
Displaying Performance Measurement Data
... 124, 186, 267
Event-related Commands in Performance Mode
... 95
Measurement Result...........cccvvveiveeeeeeeeiieiiinens 306
Measuring Procedure...........cooccuveeeeviiiieeenennnen. 308
Operation in Performance Mode..........ccccccveenn. 94
Performance FUNCLIONccvvvvvveeeeeeiiis 306
Performance M easurement Function
... 122, 184, 266
REMEASUINNG ..o 306
Performance-Buffer-Full
Performance-Buffer-Full Break........... 86, 160, 249
Specify Performance-Buffer-Full Break 123, 185
Specifying Performance-Buffer-Full Break 267
Port
1/0 Port Simulation (Input Port)cccevvvveeen. 38
1/0 Port Simulation (Output Port)cccceeeee... 38
Power-on
Power-on Debugging........ccccoovvveeeiiiinnenen. 195, 271
Power-on Debug
Power-on DebUg.........cooeiiiiiiiiiiieieeee e 285
Precautions
Precautions...........oeeeeviecciiiiieiii e 14
Probe
Commands for External Probe Data................... 134
Displaying and Setting External Probe Data........ 134
External Probe Sampling Timing..............cccv... 133
Sampling by External Prabe...........cccccccvveeeeenn. 133
Procedure
Coverage Measurement Procedures..................... 57
Specifying Symbol and Search Procedure 28
Program
Control during program execution 281
Executing aprogramccccocvveeeenniiieeeneninnens 281
Executing Program..........ccccccevveenn.. 124, 186, 267

Monitoring Program Automatic Loading

.. 204, 235
Program stopping conditions............cccccceeeeeenne 298
Setting Monitoring Program Automatic Loading
.. 139
Trace Control during Executing User Program
.. 169
Project
ACtIVEPrOJECE......veeieiiiiiii e 2
Active Project Configuration............ccccceeviivveeeennnns 4
PrOJECE ..ooeiiiiiiiie e 2
Project Configurationcocveeeeniiiieeeenniinenen. 3
Project DependencCe............eevvvriveeeeniiiieeee i 5
Project FOrmatcoooviveeeiiiiiiiie e 3
Project Management FUNCLiON...........cvveeeiiiiiinnnes 3
Restrictions on Storage of Two or More Projects
.. 2
R
RAM Area
When referring to RAM area of the O bank......... 192
RAM Check
RAM Check WIindowcooocieeeiiniiinnenennee. 196
RAM Checker
RAM Checker Mode...........coovevivecrirereiineennn. 146
RAM Checker VIewerccccovvveerrerciineennn. 199
ToUsethe RAM Checker........cccoevivveiireeeninnnns 197
Range
Setting Range for Coverage M easurement
.. 58, 127, 189
Simulation Range..........ccuveeeeieiiiiiiiiiiiiieeee, 33
RAW Data
RAW DataDisplayccccvveeeeiiiiiiieniiiiieeeee 314
Read/Write
Read/Write Memory while On-the-fly.................. 77
Reading
Reading Trace Data On-the-fly.................. 182, 230
Reading Trace Data On-the-fly in Single Trace
.. 119
Reading Trace Data On-the-fly in the Multi Trace
.. 120
Real-time Monitoring
Real-time Monitoring..........cccoovvveeeeiiniieeee e, 192
Reference
Reference Section........... 12, 13, 15, 16, 21, 24, 25
Register
Register Operations..........ccvvveeiriieeeeiiniieee e, 24
Required Resources
Required RESOUICES.........c.vvvveeiiiiiiee e 324
Reset
Reset SImUlation..........ccoocveeeeiiiieieeeiieeee e 40
Restrictions

Restrictions on Storage of Two or More Projects ... 2

INDEX

Result
Displaying Coverage Measurement Result
.. 58, 127, 189
ROM
Boot ROM File Automatic Execution........... 35, 236
Internal ROM Area Setting..........c....... 72,145, 210
ROM Area
Internal ROM Area Setting........cccveeveeveeeeeniinnnns 210
S
Sample
Sample Flow of Time Measurement by Sequencer
.. 103
Sampling
Sampling by External Probeccccceeeeeeeenn. 133
Saving
Saving Trace Ddta.............. 56, 121, 183, 231, 265
Scope
SCOPE ettt e e e e e e e ee e 28
Search
Specifying Symbol and Search Procedure............. 28
Section
Reference Section........... 12, 13, 15, 16, 21, 24, 25
Security
SECUMLY ettt 276
Semihosting
What is Semihosting Featurecccceevninnee. 319
Sequencer
Break by Sequencer ... 99
Control by Sequencer.................. 96, 163, 252, 301
Operating of SEqQUENCESooeiivviiiieeeieeeeeeee 254
Operation of SEqUENCEScoevvviiiiieeiieeeeeeene 301
Sample Flow of Time Measurement by Sequencer
.. 103
Setting SequeNnCercvveeeveiieviinnee. 97, 165, 166
Specifications of Sequencer...........cccceeeeeeeeeennnn. 302
Time Measurement by Sequencer............cccee.... 102
Trace Sampling Control by Sequencer 100
Sequential Break
Sequential Breakccccceeeviiiiiinnnnen. 83, 157, 247
Setting
Displaying and Setting External Probe Data........ 134
Example of Optional Settingsccceeeevvviccennnee. 15
Function of Setting Tool Options...............ccvveeeee. 10
Internal ROM Area Setting.................. 72,145, 210
Setting Data Monitoring Trace Trigger 169
Setting Debug Ar€a.......cccceeevevvecvnnnen. 67, 141, 206
Setting Event Modeccvveeeeeiiiiiciiiiieee, 123, 185
Setting Events............ 88, 124, 164, 185, 252, 267
Setting MCU Operation Mode
.................................... 65, 140, 205, 237

335

INDEX

Setting Method...........ccoovieveennnen. 42,44, 46, 47,
80, 82, 83, 85, 86, 153, 155, 156, 157,
159, 160, 161, 215, 217, 219, 243, 245,
246, 248, 249, 250, 326

Setting Methods of Multi Trace.........ccccceeeeennne. 174
Setting Minimum Measurement Unit for Timer
.. 123, 185, 267
Setting Monitoring Program Automatic L oading
.. 139
Setting Multi Trace........coocveeeeiiiiiieeeiiieeeees 112
Setting Number ... 156
Setting of Debug Function...........ccccccoviieeeeennee 146
Setting Operating Environment
.............................. 34, 64, 138, 203, 234
Setting OptioNScvvveeeiriieeeeeeee e 7,14,16
Setting Range for Coverage M easurement
.. 58, 127, 189
Setting SequencCer........ccvvvveeeeeininneen. 97, 165, 166
Setting SINgIe Tracecoovvvveeeeiiiieeee e 108
Setting Symbol Informationccceecveeeennnee 26
Setting Timer Minimum Measurement Unit.......... 73
Setting Trace.......ccccveveeeieiieeeeee s 170, 223, 258
Setup
Trace Trigger SEtUP......ceeeeviveeeeeiiiieeeeeas 168, 257
Simulation
1/O Port Simulation (Input Port).............cccceeveeee. 38
[/O Port Simulation (Output Port) 38
Instruction Simulation.............ccccceeeeeeeeiininieee. 36
Interrupt Simulation..............eeeiieerniiniiiiieeeee. 39
L ow-Power Consumption Mode Simulation.......... 41
Memory SImulation.............cccuveiiieeiieieen e 37
Reset SIMulation ... 40
Simulation Memory Space..........cccvveeeeeeeeeeenennne 37
Simulation RANGE........ceeviiiiriiiiiiiiiieiiee e 33
Simulator
Operating Condition of High-speed Simulator
Debugger.....coovveeiiiee 32
Simulator DebUggES.......covivvieiiiiiiiiie e, 22,32
Software
Code Break (Software)cccccvvvvvvveeeeeeninnnns 296
SOftWare Breakcevevveveiiiieeniee e 326
Source
Display in Source Line Units (Specify /SOURCE.)
.................................. 118, 181, 229, 264
SOUrCE DiSPlayccovveeeeeiiiieeee e 316
Specifications
SpecificationNS List.....coeeeiiiiieeeiiiiieeeieeee e 197
Specify
Specify Performance-Buffer-Full Break
.. 123, 185
Specifying
Specifying C Language Variables..............c.c....... 29
Specifying Displaying Trace Data Start
.................................. 114, 177, 225, 261
Specifying Performance-Buffer-Full Break......... 267

336

Specifying Symbol and Search Procedure 28

Standard Clock Frequency
Standard Clock Frequency for High-speed

ComMMUNICALIONcvvviieiieieeeeiieiiis 279
Standard Editor
Standard Editor............eeeviiiiiiiiiiiieeeeeeeen 13
Status
Displaying Trace Data Storage Status
................................. 113, 176, 224, 260
STEP
Notes on STEP Command
........................... 75, 149, 212, 239, 287
Step
Frame Number and Step Number in Single Trace
... 107
STUB
STUB FUNCLION. ...ttt 42
Subproject
SUDPFOJECE ...t 2
Switching methods
Switching methods........cccoooviiiiiis 280
Symbol
Notes on C Language Symbols...........cccccovvuvneeen. 30
Setting Symbol Information...........ccccovcveveennnen. 26
Specifying Symbol and Search Procedure 28
Types of Symbols.........ccoovviiiiiiieeee 26
Syntax
SYNEAX i 11
T
Target
Operating Environments of the Target 274
Terminal Window
What is Terminal Windowccccccvvvveeennnn. 319
Time Measurement by Sequencer
Time Measurement by Sequencer 102
Timer
Controlling Watchdog Timer 75, 149, 212, 239
Setting Minimum Measurement Unit for Timer
... 123, 185, 267
Setting Timer Minimum Measurement Unit 73
Timing
External Probe Sampling Timing................c...... 133
To Access the Flash Memoryccccoovcvveeeenins 289
To Interrupt the Program Execution..................... 293
To Use the RAM Checker
To Usethe RAM Checker...........coooccvvvvvnnnnennnn. 197
Tool
ExXternal TOOIS.......ccouviiiiiiiiiiiiiieeeeee e 16
Function of Setting Tool Options......................... 10
TOOl OPLIONS ...cceeeiiiiiiiiiieeee e 10
Trace
Clearing Trace Data......ccceveeeeeeiieiiiiiiiieeeeeaeeeen 54

Display Format of Trace Data.........cccceeeeeeinnnnnes 54
Display without Analyzing Trace Data (Specify /
RAWDATAL) oo 262
Displaying Trace Data...........cccvvveeeeeeieeeeiniins 54
Displaying Trace Data Storage Status
.................................. 113, 176, 224, 260
Frame Number and Step Number in Single Trace
.. 107
Function of Single Trace...........ccoceeviivieeeennen. 106
MUILE TFaCE ..eeeeieiiiiiee e 171
Multi Trace Frame Number....................... 110, 171
Multi Trace FUNCLION..........ovveiiiiiiieiiiieee e 110
Reading Trace Data On-the-fly.................. 182, 230
Reading Trace Data On-the-fly in Single Trace
.. 119
Reading Trace Data On-the-fly in the Multi Trace
.. 120
Saving Trace Data.............. 56, 121, 183, 231, 265
Searching Trace Dataccvveveiiiiieeeiiiiieeeeee 55
Setting Data Monitoring Trace Trigger............... 169
Setting Methods of Multi Trace.........ccccoocvveeenne 174
Setting Multi Traceooeevviieeiiiieeciieeee 112
Setting SINGIe Trace......ooviviiieeeiiieiee e 108
Setting Trace ...oooeevevvveciiiiieeee, 53, 170, 223, 258
Specifying Displaying Trace Data Start
.................................. 114, 177, 225, 261
TrACE .. 52
Trace Buffer.....oooeveevveevvieenennns 105, 167, 221, 256
Trace Control during Executing User Program
.. 169
TraceData.........ccccevneeenneen. 52, 105, 167, 221, 256
Trace DE@yoocvveeeiiie 172
Trace Enhancement Mode...........cccoocvveeeininnnen. 146
Trace Filter...coovveiiiiiiiieeeeeee, 168, 222, 257
Trace FUNCHIONScooiiiiiiieiiii e 310
Trace Sampling Control by Sequencer 100
Trace Trigger Setup......cvvveeerveeeeeiiiieeeen, 168, 257
What iISTIatevvvvveiiiiiiie e 310
Trace Buffer
Trace BUFfErooviiiiiecc e 310

INDEX

Trace Data

Acquiring Trace Data...........oocveeveeiiiieeeeiiiieeee. 310

Display Formats of Trace Data.............cceeeeenneee. 312

How to Display Trace Data............ceeevivveeeennnnne 312

Saving Trace Data..........ovcvveeeeiiiiieeeiiiieeeee, 317

Searching for Trace Data...........cccceveevniiineeennnnne 318

Trace Data Display POSItiONccvveeeiiiiiienenns 312
Trace-Buffer-Full

Trace-Buffer-Full Break........ 47, 85, 159, 219, 248
Trigger

External Trigger Break.........cccooovveveennnnen. 161, 250

Setting Data Monitoring Trace Trigger 169

Trace Trigger SEtUPoveeeviveeeeeeiiiieeeees 168, 257
Type

Memory Area TYPES.........eveveeeenecnnnnnn. 68, 142, 207

Type of DEDUGUESvvvvieiiiiiieee e 22

Types of SymbolS.......c.ccceeevviiiiiii e 26
Types of Sequential Break

Types of Sequential Break.............coevvvveiviiinnnnnes 247
U

User Program
Commands Available during Execution of User

Program............ccccvvvnnn. 76, 150, 213, 240

Vv
Variables

Specifying C Language Variablesccccccceene. 29
W
Watchdog Timer

Controlling Watchdog Timer 75, 149, 212, 239
Workspace

WOIKSPECE.......ccce e 2

Workspace Management Function.......................... 2

337

INDEX

338

CM41-00313-6E

FUJITSU SEMICONDUCTOR « CONTROLLER MANUAL
F2MC-16 FAMILY

SOFTUNE ™ workbench
USER’S MANUAL

April 2011 the 6th edition

Published FUJITSU SEMICONDUCTOR LIMITED
Edited Sales Promotion Dept.

	CHAPTER 1 BASIC FUNCTIONS
	1.1 Workspace Management Function
	1.2 Project Management Function
	1.3 Project Dependence
	1.4 Make/Build Function
	1.4.1 Customize Build Function

	1.5 Include Dependencies Analysis Function
	1.6 Functions of Setting Tool Options
	1.7 Error Jump Function
	1.8 Editor Functions
	1.9 Storing External Editors
	1.10 Storing External Tools
	1.11 Macro Descriptions Usable in Manager
	1.12 Setting Operating Environment
	1.13 Debugger Types
	1.14 Memory Operation Functions
	1.15 Register Operations
	1.16 Line Assembly and Disassembly
	1.17 Symbolic Debugging
	1.17.1 Referring to Local Symbols
	1.17.2 Referring to Variable of C Language

	CHAPTER 2 DEPENDENCE FUNCTIONS
	2.1 Simulator Debugger
	2.1.1 Setting Operating Environment
	2.1.1.1 Boot ROM File Automatic Execution

	2.1.2 Instruction Simulation
	2.1.3 Memory Simulation
	2.1.4 I/O Port Simulation
	2.1.5 Interrupt Simulation
	2.1.6 Reset Simulation
	2.1.7 Low-Power Consumption Mode Simulation
	2.1.8 STUB Function
	2.1.9 Break
	2.1.9.1 Code Break
	2.1.9.2 Data Break
	2.1.9.3 Trace-Buffer-Full Break
	2.1.9.4 Guarded Access Break
	2.1.9.5 Forced Break

	2.1.10 Measuring Execution Cycle Count
	2.1.11 Trace
	2.1.11.1 Setting Trace
	2.1.11.2 Displaying Trace Data
	2.1.11.3 Searching Trace Data
	2.1.11.4 Saving Trace Data

	2.1.12 Measuring Coverage
	2.1.12.1 Coverage Measurement Procedures

	2.1.13 Checking Debugger Information

	2.2 Emulator Debugger (MB2141)
	2.2.1 Setting Operating Environment
	2.2.1.1 MCU Operation Mode
	2.2.1.2 Debug Area
	2.2.1.3 Memory Area Types
	2.2.1.4 Memory Mapping
	2.2.1.5 Timer Minimum Measurement Unit

	2.2.2 Notes on Commands for Executing Program
	2.2.3 Commands Available during Execution of User Program
	2.2.4 On-the-fly Memory Access
	2.2.5 Break
	2.2.5.1 Code Break
	2.2.5.2 Data Break
	2.2.5.3 Sequential Break
	2.2.5.4 Guarded Access Break
	2.2.5.5 Trace-Buffer-Full Break
	2.2.5.6 Performance-Buffer-Full Break
	2.2.5.7 Forced Break

	2.2.6 Events
	2.2.6.1 Operation in Normal Mode
	2.2.6.2 Operation in Multi Trace Mode
	2.2.6.3 Operation in Performance Mode

	2.2.7 Control by Sequencer
	2.2.7.1 Setting Sequencer
	2.2.7.2 Break by Sequencer
	2.2.7.3 Trace Sampling Control by Sequencer
	2.2.7.4 Time Measurement by Sequencer
	2.2.7.5 Sample Flow of Time Measurement by Sequencer

	2.2.8 Real-time Trace
	2.2.8.1 Single Trace
	2.2.8.2 Setting Single Trace
	2.2.8.3 Multi trace
	2.2.8.4 Setting Multi Trace
	2.2.8.5 Displaying Trace Data Storage Status
	2.2.8.6 Specify Displaying Trace Data Start
	2.2.8.7 Display Format of Trace Data
	2.2.8.8 Reading Trace Data On-the-fly
	2.2.8.9 Saving Trace Data

	2.2.9 Measuring Performance
	2.2.9.1 Performance Measurement Procedures
	2.2.9.2 Display Performance Measurement Data

	2.2.10 Measuring Coverage
	2.2.10.1 Coverage Measurement Procedures

	2.2.11 Execution Time Measurement
	2.2.12 Sampling by External Probe
	2.2.13 Checking Debugger Information

	2.3 Emulator Debugger (MB2147-01)
	2.3.1 Setting Operating Environment
	2.3.1.1 Monitoring Program Automatic Loading
	2.3.1.2 MCU Operation Mode
	2.3.1.3 Debug Area
	2.3.1.4 Memory Area Types
	2.3.1.5 Memory Mapping
	2.3.1.6 Debug Function
	2.3.1.7 Event Mode

	2.3.2 Notes on Commands for Executing Program
	2.3.3 Commands Available during Execution of User Program
	2.3.4 Break
	2.3.4.1 Code Break
	2.3.4.2 Data Break
	2.3.4.3 Monitoring Data Break
	2.3.4.4 Sequential Break
	2.3.4.5 Guarded Access Break
	2.3.4.6 Trace-Buffer-Full Break
	2.3.4.7 Performance-Buffer-Full Break
	2.3.4.8 External Trigger Break
	2.3.4.9 Forced Break

	2.3.5 Control by Sequencer
	2.3.5.1 Setting Sequencer

	2.3.6 Real-time Trace
	2.3.6.1 Setting Single Trace
	2.3.6.2 Multi Trace
	2.3.6.3 Setting Methods of Multi Trace
	2.3.6.4 Displaying Trace Data Storage Status
	2.3.6.5 Specify Displaying Trace Data Storage Status
	2.3.6.6 Display Format of Trace Data
	2.3.6.7 Reading Trace Data On-the-fly
	2.3.6.8 Saving Trace Data

	2.3.7 Measuring Performance
	2.3.7.1 Performance Measurement Procedures
	2.3.7.2 Display Performance Measurement Data

	2.3.8 Measuring Coverage
	2.3.8.1 Coverage Measurement Procedures

	2.3.9 Real-time Monitoring
	2.3.10 Execution Time Measurement
	2.3.11 Power-on Debugging
	2.3.12 RAM Checker
	2.3.13 Checking Debugger Information

	2.4 Emulator Debugger (MB2147-05)
	2.4.1 Setting Operating Environment
	2.4.1.1 Monitoring Program Automatic Loading
	2.4.1.2 MCU Operation Mode
	2.4.1.3 Debug Area
	2.4.1.4 Memory Area Types
	2.4.1.5 Memory Mapping

	2.4.2 Notes on Commands for Executing Program
	2.4.3 Commands Available during Execution of User Program
	2.4.4 Break
	2.4.4.1 Code Break
	2.4.4.2 Data Break
	2.4.4.3 Guarded Access Break
	2.4.4.4 Trace-Buffer-Full Break
	2.4.4.5 Forced Break

	2.4.5 Real-time Trace
	2.4.5.1 Setting Trace
	2.4.5.2 Displaying Trace Data Storage Status
	2.4.5.3 Specifying Displaying Trace Data Start
	2.4.5.4 Display Format of Trace Data
	2.4.5.5 Reading Trace Data On-the-fly
	2.4.5.6 Saving Trace Data

	2.4.6 Measuring Execution Cycle Count

	2.5 Emulator Debugger (MB2198)
	2.5.1 Setting Operating Environment
	2.5.1.1 Monitoring Program Automatic Loading
	2.5.1.2 Boot ROM File Automatic Execution
	2.5.1.3 MCU Operation Mode
	2.5.1.4 Operation Frequency Control

	2.5.2 Notes on Commands for Executing Program
	2.5.3 Commands Available during Execution of User Program
	2.5.4 Break
	2.5.4.1 Code Break
	2.5.4.2 Data Break
	2.5.4.3 Guarded Access Break
	2.5.4.4 Sequential Break
	2.5.4.5 Trace-Buffer-Full Break
	2.5.4.6 Performance-Buffer-Full Break
	2.5.4.7 External Trigger Break
	2.5.4.8 Forced Break

	2.5.5 Control by Sequencer
	2.5.5.1 Operating of sequencer

	2.5.6 Real-time Trace
	2.5.6.1 Setting Trace
	2.5.6.2 Displaying Trace Data Storage Status
	2.5.6.3 Specifying Displaying Trace Data Start
	2.5.6.4 Display Format of Trace Data
	2.5.6.5 Saving Trace Data

	2.5.7 Measuring Performance
	2.5.7.1 Performance Measurement Procedures
	2.5.7.2 Display Performance Measurement Data

	2.5.8 Execution Time Measurement
	2.5.9 Power-On Debugging

	2.6 Emulator Debugger (MB2100-01)
	2.6.1 Starting debugging
	2.6.1.1 Operating Environments of the Target
	2.6.1.2 Security

	2.6.2 Ending debugging
	2.6.3 Efficiently Executing Debugging
	2.6.3.1 Increasing Communication Speed during Debugging
	2.6.3.2 Switching Debug Function

	2.6.4 Executing Program
	2.6.4.1 Setting/Release of Debug Functions
	2.6.4.2 Monitoring
	2.6.4.3 Power-on Debug
	2.6.4.4 Notes on Commands for Executing Program

	2.6.5 To Access the Flash Memory
	2.6.6 To Interrupt the Program Execution [Break]
	2.6.6.1 Code Break (Hardware)
	2.6.6.2 Code Break (Software)
	2.6.6.3 Data Break
	2.6.6.4 Forced Break
	2.6.6.5 Data Watch Break
	2.6.6.6 Sequencer

	2.6.7 Measuring the Program Execution Cycle Count
	2.6.8 Measuring Event-to-Event Execution Cycle Count [Performance Measurement]
	2.6.8.1 Measuring Performance

	2.6.9 Viewing Program Execution History [Trace]
	2.6.9.1 Displaying Trace Data
	2.6.9.2 Trace Data Display Examples (RAW Data)
	2.6.9.3 Trace Data Display Example (Instruction)
	2.6.9.4 Trace Data Display Example (Source)
	2.6.9.5 Saving Trace Data
	2.6.9.6 Searching for Trace Data

	2.6.10 How to Display the Output Message from User Program to the Debugger
	2.6.11 Checking Debugger Information

	2.7 Monitor Debugger
	2.7.1 Resources Used by Monitor Program
	2.7.2 Break
	2.7.2.1 Software Break
	2.7.2.2 Forced Break

